您现在的位置是:首页 >

下课了同学们什么的冲出教室 求各位同学们帮出100道5、6年级解方程应用题,顺便带答案,谢谢。

火烧 2022-11-30 13:29:54 1063
求各位同学们帮出100道5、6年级解方程应用题,顺便带答案,谢谢。 求各位同学们帮出100道5、6年级解方程应用题,顺便带答案,谢谢。1、机床厂原来知道机床每台用钢材1.02吨,改进设计后,每台比原来

求各位同学们帮出100道5、6年级解方程应用题,顺便带答案,谢谢。  

求各位同学们帮出100道5、6年级解方程应用题,顺便带答案,谢谢。

1、机床厂原来知道机床每台用钢材1.02吨,改进设计后,每台比原来节约0.12吨,原来制造300台所用的钢材,现在可以制造机床多少台?
2、小明买了6支铅笔和4本练习本,每本练习本0.68元,每支铅笔0.24元。小明付出5元钱,应找回多少元?
3、甲、乙两列火车同时从两地相对开出,甲火车每小时行使80千米,乙火车每小时行使70千米,开出12小时后两车还相距110千米,两地相距有多少千米?
4、光明造纸厂生产一批新闻纸,原计划28天完成,每天需生产12.5吨。施加提前3天完成,实际每天比原计划多生产多少吨?
5、李师傅生产一 批零件,前3天生产零件126件,照这样计算,再生产12天完成生产任务。这批零件共有多少件?
6、化肥厂计划用30天生产化肥84吨,实际每天比计划多生产0.2吨,实际比计划提前几天完成任务?
7、加工一批服装,每天加工300套,16天可以完成,
(1) 如果每天加工400套,提前几天完成?
(2) 如果每天多加工20套,几天可以完成?
(3) 如果要提前5天完成,每天要加工多少套?
8、某汽车厂计划全年生产汽车16800台,结果提前2个月就完成了全年的生产任务。照这样的速度,全年可生产汽车多少台?
9、新丰农机厂一个车间加工2480个零件。原来每天加工100个,工作20天后,改为每天加工120个。这样再加工几天就可以完成任务?
10、一个服装厂原来做一种儿童服装,每套用布2.2米。现在改进了裁剪方法,每套节省布0.2米。原来做600套这种服装所用的布,现在可以做多少套?
11、小红买了练习本和生字本各3本,一本练习本0.36元,一本生字本0.32元,小红买生字本比买练习本少用多少元?
12、同学抬水浇树。三年级浇45棵,三年级比四年级少浇10棵,四年级是五年纪浇的棵数的一半。五年级比三年纪多浇多少棵?
13、两个工程队合开一条隧道,各从一端开凿,第一队每天开12.6米,第二队每天开14.4米,第一队开凿5天后,第二队才加入,再过21天隧道终于打通。
(1)这条隧道长多少千米?
(2)打通时两队各开凿了多少米?
14、小汽车每小时行63千米,小汽车的速度是载重汽车的1.4倍。它们从相距270千米的两地同时开出,相向行驶。
(1) 经过几小时相遇?
(2) 相遇时两车各行了多少千米?
(3) 如果出发时是8时15分,相遇时是几时几分?
15 一辆摩托车 小时行98千米,一辆卡车 小时行80千米,试求:
(1)摩托车与卡车所用时间之比;
(2)摩托车与卡车所行路程之比;
(3)摩托车速度与卡车速度之比。
16 一辆汽车从甲地开往500千米外的乙地,已经行了280千米,求已经行的路程与剩下路程之比。
17 一项工程,甲队单独做10天完成,乙队单独做8天完成,甲队与乙队工作效率之比是多少?
18 五(1)班有学生40人,体育锻炼达标的有32人,未达标的人数占全班人数的百分之几(即求未达标率)?
19 小李、小赵、小王三人合做一批零件,到完工时,小李做总数的 ,小赵做总数的 ,小王做总数的 ,求三人所做零件数量之比。
20 五(1)班第一次数学测试,及格的有48人,不及格的有2人。求这次数学测试的及格率。
21 某车间某天出勤职工38人,缺勤2人,求出勤率。
22 某厂上半月完成计划产量的56%,下半月又完成计划产量的64%,这个月增产百分之几?
23 一套自学丛书,现在的单价是160元,比原价降低了40元,问现在的售价是原价的百分之几?
24 少先队绿化组春季植树360株,秋季植树440株,共成活760株,求树苗成活率。
25 月饼厂去年生产月饼140吨,今年生产月饼210吨,今年比去年增产百分之几?
26 6千克比5千克多百分之几?5千克比6千克少百分之几?
27 某厂上半月完成计划产量的56%,下半月又完成计划产量的64%,这个月增产百分之几?
28 服装厂下半年生产服装计划数比上半年增加20%,那么下半年生产服装计划数是上半年的百分之几?
29 .油菜籽的出油率是38%,5吨油菜籽可加工出多少吨油?
30 .修建一自来水厂,计划投资500万元,实际比计划节约了5%,节约了多少万元?
31.油菜籽的出油率达到八成五,勤奋村种了8公顷油菜,每公顷收到油菜籽3750千克,共可出菜籽油多少千克?
32.辛庄小学六年级学生有200人,其中120人参加兴趣小组,要使参加兴趣小级的人数达到88%,还需要增加多少人参加?
33.养鸡场养肉鸡10万只,第一次卖去 ,第二次卖去25%,还剩多少万只?
34.一堆煤重120吨,第一天运走了总重量的20%,第二天运走总重量的25%,还剩下多少吨?
35.一辆汽车原来每小时用去汽油12升,修理后用油节约了10%,现在这辆汽车每小时用去汽油多少升?
36.某小学四年级有120人,五年级比四年级少10%,五年级有多少人?
37.汽车 小时行24千米,摩托车每小时的速度比汽车快70%,摩托车每小时行多少千米?
38 一条公路,第一个月修了全长的 ,第二个月修了6千米,还剩37.5%没有修。这条公路全长多少米?
39 某厂生产一批零件,第一天生产40件,第二天比第一天多生产10%,两天的产量占总数的25%,这批零件有多少件?
40 一辆汽车从甲城开往乙城,已经行了72千米,还剩下全程的62.5%,这辆汽车行到乙城还需要多少千米?
41 甲、乙两车同时从两地相向开出,当甲车行了全程的60%,乙车行了全程的75%时,两车相距140千米。两地相距多少千米?甲车比乙车少行多少千米?
42 庆丰商店运来桔子和梨1620千克,运来的梨是桔子的80%,运来桔子和梨各多少千克?.
43 油菜籽的出油率是38%,5吨油菜籽可加工出多少吨油?
44 修建一自来水厂,计划投资500万元,实际比计划节约了5%,节约了多少万元?
45 全国工商税收收入95年为5383亿元,96年增收1051亿元,96年比95年增收百分之几?
46、 新华书店把5250本文艺书和科技书运往农村,文艺书有25包,科技书有80包,每包的本数相等。每包多少本书?科技书和文艺书各有多少本?
47、 一个粮店,上午卖出50袋面粉,下午卖出30袋面粉,每袋面粉的重量相等,上午比下午多卖出面粉1600千克。每袋面粉重多少千克?上午和下午各卖出面粉多少千克?
48、 第一辆卡车运来水泥80包,第二辆卡车运来水泥65包,比第一辆卡车少运来水泥1.5吨,两辆卡车各运来水泥多少吨?
49、 一个水果店有两筐单价相同的苹果,第一筐重45千克,第二筐重39千克,第二筐比第一筐少卖15元,两筐苹果各值多少元?两筐苹果共值多少元?
50、 华丰水国行,运来的梨比橘子多840千克,梨的重量是橘子的1.5倍,橘子和梨各重多少千克?
51、 服装厂有工人156人,其中女工人数是男工人数的3倍,求男、女工各有多少人?
52、 两包赈灾物品共重154千克,其中第一包比第二包的2倍少14千克,求两包赈灾物品的重量各是多少千克?
53、 仓库存有大米和面粉,已知存放的面粉比大米多4500千克,存放的面粉比大米的3倍还多700千克,求仓库存有大米和面粉各多少千克?
54、 明明星期天上街买衣服,花175元买了一套服装,已知上衣比裤子贵15元,上衣与裤子各多少元?
55、 一个长方形的周长是55厘米,已知长比宽长3.5厘米,这个长方形的长和宽各是多少厘米?
Sorry,原来电脑出了点问题。

下课了同学们什么的冲出教室 求各位同学们帮出100道5、6年级解方程应用题,顺便带答案,谢谢。

解方程应用题,谢谢各位

"设10位数的数字为x,个位数的为y。

急需小学4年级方程应用题及答案200道,谢谢各位!

1. 一个工程队每天筑路85米。照这样计算,4个工程队7天筑路多少米? 4(1)85×4×7=2380(米) (2)4×7×85=2380(米)
2. 电扇厂5个车间30天生产电扇2250台,平均每个车间每天生产电扇多少台?(解答后再检验)(1)2250/(5×30) =15(台) (2)2250/5/30=15(台)
3. 李师傅每小时加工零件49个,张师傅每小时加工零件54个,两人各做8小时,李师傅比张师傅少做多少个? (1)54×8--49×8=40(个) (2)(54—49)×8=40(个)
4. 水果店运来苹果和梨子各25筐,苹果每筐6千克,梨子每筐8千克,苹果和梨子一共有多少千克? (1)25×6+25×8=350(千克) (2)25×(6+8)=350(千克)
5. 参加春季植树时,五年级去了52人,每人植树26棵;四年级去了48人,每人植树25棵。五年级比四年级多植树多少棵?52×26--48×25=152(棵)
6. 学校举行运动会,三年级有45人参加,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数还多15人。五年级参加比赛的有多少人? 45×3=135(人)135+45+15=195(人)
7. 养鸡场有公鸡46只,母鸡比公鸡的25倍少20只,养鸡场共有鸡多少只? 46×25-20=1105(只) 1105+46=1151(只)
8. 某校各年级的少先队员的人数如下:一年级没有,二年级36人,三年级97人,四年级185人,五年级254人,六年级238人。全校平均每个年级有少先队员多少人? (36+97+185+254+238)/5=162(人)
9. 某小学的同学修理桌椅用了40.5元,装订图书比修理桌椅少用了3.7元。修理桌椅和装订图书一共用了多少元? 40.5—3.7=36.8(元) 36.8+40.5=77.3(元)
10. 地球表面积是5.1亿平方千米,其中陆地面积1.49亿平方千米,海洋面积比陆地面积多多少亿平方千米? 5.1—1.49=3.61(平方千米) 3.61-1.49=2.12(平方千米)
11. 小李家有母鸡24只,比公鸡多18只,母鸡只数是公鸡的几倍? 24-18=6(只) 24/6=4
12. 王村要修一条长1200米的水渠,已经修了10天,还有480米没有修。平均每天修多少米? 1200-480=720(米) 720/10=72(米)
13. 某县要修一条公路,已经修了20天,平均每天修350米,还剩800米没有修,这条公路长多少米? 20×350+800=7800(米)
14. 商店运来化肥300袋,每袋50千克,卖出120袋,还剩多少千克? 300×50--120×50=9000(千克)
16. 小明家到学校有600米,用10分钟走到。照这样计算,从小明家到书店有1080米,他要走多少分钟? 600/10=60(米) 1080/60=18(分钟)
17. 小方从家到学校,每分钟走60米,需要14分钟,如果她每分钟多走10米,需要多少分钟? 60×14=840(米) 840/(60+10)=12(分钟)
18. 甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时? 210/6=35(米) 210/(35+7)=5(小时)
19. 甲乙两地相距420千米,一辆汽车从甲地到乙地计划用7小时到达,实际每小时行了70千米。实际比计划提前了几小时到达? 420/70=6(小时) 7—6=1(小时)
20. 火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。甲乙两城相距多少千米?200/4=50(千米) 200+50=250(千米)
21. 一块边长300米的正方形土地,共收白菜36吨,平均每公顷收多少吨? 300×300=90000(平方米) 90000平方米=9公顷 36/9=4(吨)
22. 王大爷给一块长800米,宽400米的稻田施肥,每公顷施肥250千克,一共应施肥多少千克? 800×400=320000(平方米) 320000平方米=32公顷 32×250=8000(千克)

20道七年级解方程应用题及答案, 七年级解方程应用题及答案分析 急用!

1.某中学修整草场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独做,需要5小时完成.如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?
设初二学生还要工作x小时。
(1/7.5)+(1/5)x=1
x=10/3
共需10/3+1=4又1/3小时
2.甲骑车从A地到B地,乙骑车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.求AB两地路程.
设:AB距离为X,12时-10时=2小时,10时-8时=2小时
2*[(36*2)/2]=X-36
第一个2是8时到10时,共2小时
36*2是10时到12时有两次相距36千米,即两小时二人共走36*2千米
(36*2)/2就求出二人一小时共走多少千米,即二人速度和
根据“以知两人在上午8时同时出发,到上午10时,两人还相距36千米”这句话列出方程
结果
X=108
答:AB两地相距108千米
3一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?
解:设甲、乙两站距离为S千米,则有:
S/90=(S/2)/90+12/60+(S/2)/(90+10)
解得:S=360(千米)
答:甲乙两地距离为360千米。
4小明到外婆家去,若每小时行5千米,正好按预定时间到达,他走了全程的五分之一时,搭上了一辆每小时行40千米的汽车,因此比预定时间提前1小时24分钟到达,求小明与他外婆家的距离是多少千米
.解:设小明与他外婆家的距离为S千米,则有:
S/5=(S/5)/5+(4S/5)/40+(1+24/60)
解得:S=10(千米)
答:小明与他外婆家的距离为10千米
5桥上用绳子测桥高,把绳子对折后垂到水面时,尚余8尺。绳子折三折后垂到水面上尚余2尺,求桥高和绳长。
设桥高X 则方程为2(X+8)=3(X+2) 解得X=10 则桥高10尺 绳长为36尺
6两个连续的奇数和是40,这两个奇数分别是几?
设前一个奇数为X 则得方程 X+(X+2)=40 解得X=19,则一奇数为19 另一奇数为21
7某工厂有三个车间,第一车间占1/4,第二车间是第三车间的3/4,第一车间比第三车间少40人,三个车间共多少人?
设总人数为X 则第一车间人数为X/4 第二车间与第三车间总人数为(3X/4) 所以根据第二车间与第三车间的关系得知第三车间的人数为(3X/7)所以的方程:(3X/7)-(X/4)=40 解得X=224
8一项水利工程,甲队单独完成需要15天,乙队单独完成需要12天,若两队合作5天完成,剩下的工程由甲队做,甲队还需多少天才能完成?
解:设甲队还需x天才能完成。
5(1/15+1/12)+1/15x=1
3/4+1/15x =1
1/15x =1-3/4
x =15/4
9在甲处劳动的有31人,在乙处劳动的有20人,现调来18人支援,要使甲处劳动的人是乙处劳动的人数的2倍,应往甲.乙两处各调去多少人?
设调后甲的人数为X。乙为1/2X。
(X-31)+(1/2X-20)=18
X-31+1/2X-20=18
3/2X=69
X=46
X-31=15 1/2X-20=3
所以应往甲处调15人,应往乙处调3人。
10一只猴子有一堆桃子,第一天他吃了 桃子总数的二分之一 加一个,第二天吃了 剩下的二分之一加一个,第三天又吃了剩下的二分之一加一个 正好把这堆桃子吃完,请问这堆桃子一共有多少个?
解:设有X个桃子
X-(X-12X+1)-(X-21X+1)×12-(X-12X+1)×12×12=0
X=14
11一队学生去校外进行军事野营训练,他们以每小时三千米的速度行走,走了十八分的时候,学校要将一个紧急通知选给队长,通讯员从学校出发,骑自行车以十四千米每小时的速度按原路追上,通讯员用几小时可以追上学生队伍?
设通讯员用x小时可以追上学生队伍
3*(18/60)+3x=14x
x=9/110小时
12某工人原计划用26天生产一批零件,工作2天后,因改变操作方法,每天比原来多生产5个零件,结果提前4天完成任务,问原来每天生产多少个零件?这批零件一共多少个?
原来每天生产x个零件
26x=2x+(26-4-2)(x+5)
x=25
这批零件共=25*26=650
13一个游泳池有两个进水管A和B,和一个排水管C,单开A管3h可以住满水池,单开B管4h可以住满水池,单开C管6h可以放完一池水,若A管先单独开放半小时,B和C两管一同打开,问需要再过多少时间可以注入半池水?
设需要再过x小时可以注入半池水
(1/2+x)*1/3+1/4*x-1/6*x=1/2
x=0.8
0.8*60=48分钟
14学校举办“迎奥运”知识竞赛,设一.二.三等奖共12名,奖品发放方案如下:一等奖,一和福娃和一枚徽章。二等奖:一盒福娃。三等奖:一枚徽章。用于购买奖品的总费用为1020,小明在购买“福娃”和徽章前,了解到如下信息:两盒福娃与1枚徽章共315元。1盒福娃与3枚徽章共195元。1.求一盒福娃和一枚徽章各多少元?2.若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
设一盒福娃x元一枚徽章y元
得到方程组 2x+y=315 x+3y=195
x= 150 y=15
设二等奖a名 三等奖(10-a)名
165*2+150a+15(10-a)=1020
a=4
二等奖4名和三等奖6名
15小红撕下二月份的3张日历,每两张的日期之和分别是27,28,29,你能说出这三张日历的日期分别是什么吗?
设最小的一张为X,由于每两张的日期之和分别是27,28.29.所以这三张是连续的.所以有
X+(X+1)=27
得X=13
16小明和爸爸的年龄和是52岁,7年后爸爸的年龄是小明年龄的2倍多6岁,求小明今年的年龄?
.设小明今年的年龄为X岁.
则(2X+6-7)+(X-7)=52
得X=20
17某工程,甲单独做12天完成,乙单独做8天完成,现在由甲先做2天,乙再参加合作,求完成这项工程还需几天?
设还要X天则有方程:2/12+(1/12+1/8)*X=1
18侑一项工程,甲队独做需要10天完成,乙队独做需要30天完成.现在甲,乙两队合作完成这项工程,已知甲队休息了2天,乙队休息了8天,但甲乙两队没有再同一天休息过,那么两队共同工作了多少天?
设共同工作了X天则有方程:2/30+8/10+(1/10+1/30)*X=1
19学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
解 设应调往甲处 人,根据题意,得27+ =2(18- ).解这个方程,得 =3.
答:从乙处调3人到甲处.
20学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?
解 设应调往甲处 人,根据题意,得27+ =2(18+20- )+2.解这个方程,得 =17.∴20- =3.答:应调往甲处17人,乙处3人.
累死我了,一定要给我20分哦!

解方程,15道,列方程应用5道加答案,谢谢

1、某单位准备要去某地方旅行 该单位正在准备联系旅行社 A、B旅行社每位的费用都是300 A旅行社表明全部打8折付费 B旅行社表明一人免费 其余按9折付费 请问当该单位的人数为多少人去旅行时 两个旅行社的费用总额一样?
2、赵刚期末考试语文、数学、外语的成绩分别为三个连续偶数,其和为270 ,则数学成绩为多少?
3、现在对某商品降价百分之十促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?
4、甲对乙说:"当我是你现在的年龄,你才4岁."乙对甲说:"当我是你现在的年龄时,你将61岁."问甲,乙现在的年龄各是多少?
5、
一批文稿,如果甲抄30小时完成,乙抄20小时完成,现由甲抄3小时后该为乙抄余下部分,问乙尚需抄多少小时?
6、
甲乙两人分别从相距60千米的AB两地骑摩托车出发去某地,甲在乙后面,甲每小时骑80千米,乙每小时骑45千米,若甲比乙早30分出发,问甲出发经过多长时间可以追上乙?
7、
某飞机原定以每小时495千米的速度飞往目的地,后因任务紧急,飞行速度提高到每小时660千米,结果提前1小时到达,问总的航程是多少千米?
8、一瓶酱油先吃去0.6千克,后又吃去余下的3/5,瓶中酱油还有0.8千克.这瓶酱油原来有多少千克
9、一列货车和一列客车同时同地背向而行,当货车行5小时,客车行6小时后,两车相距568千米.已知货车每小时比客车快8千米.客车每小时行多少千米?
10、李欣骑自行车,刘强骑摩托车,同时从相距60千米的两地出发相向而行.途中相遇后继续前进背向而行.在出发后6小时,他们相距240千米.已知李欣每小时行18千米,求刘强每小时行多少千米?
11、
.甲、乙两人相距22.5千米,并分别以2.5千米/时与5千米/时的速度同时相向而行,同时甲所带的小狗以7.5千米/时的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙……直到甲、乙两人相遇,求小狗所走的路程.
12、一辆汽车以每小时60千米的速度由甲地驶往乙地,当车行驶了4小时30分后,遇雨路滑,车不能开快,这样将速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲,乙两地的距离.
13、七年级学生去春游,如果减少一辆客车,每辆正好坐60人,如果增加一辆客车,每辆车正好坐45人,问七年级共有多少学生?
14、小刚和小明骑自行车去郊外游玩,事先决定早晨8时从家里出发,预计每时骑7.5千米,上午10时可到目的地.出发前他们又决定上午9时到达目的地.那么每时骑多少千米?
15、 某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨.受人员限制,这批牛奶必须在4天内全部销售或加工完毕.为此设计两种可行方案:
方案一:尽可能多的制成奶片,其余的直接销售鲜奶.
方案二:将一部分制成奶片,其余制成酸奶销售,并且恰好4天完成.
问:你认为选择哪种方案获利多?为什么?

初一解方程应用题40道带答案,急!

猪猪侠zb 二级 | 我的知道 | 消息(13) | 百度首页
个人资料 退出
我的提问 我的回答 为我推荐的提问
新闻网页贴吧知道MP3图片视频百科文库 帮助 | 设置

百度知道 > 教育/科学 > 理工学科 > 数学
求25道七年级上册数学应用题 带答案的
2011-12-1 06:41 提问者:匿名 | 浏览次数:7681次
尽量题目比较短 过程长点的
2011-12-5 19:27 满意回答 1.某商店有一套运动服,按标价的8折出售仍可获利20元,已知这套运动服的成本价为100元,问这套运动服的标价是多少元?考点:一元一次方程的应用.专题:销售问题.分析:设这套运动服的标价是x元.
此题中的等量关系:按标价的8折出售仍可获利20元,即标价的8折-成本价=20元.解答:解:设这套运动服的标价是x元.
根据题意得:0.8x-100=20,
解得:x=150.
答:这套运动服的标价为150元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
2.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?考点:一元一次方程的应用.专题:行程问题.分析:本题首先依据题意得出等量关系即甲地到乙地的路程是不变的,进而列出方程为10( 2960-x)=18( 2560-x),从而解出方程并作答.解答:解:设平路所用时间为x小时,
29分= 2960小时,25分= 2560,
则依据题意得:10( 2960-x)=18( 2560-x),
解得:x= 13,
则甲地到乙地的路程是15× 13+10×( 2960-13)=6.5km,
答:从甲地到乙地的路程是6.5km.点评:本题主要考查一元一次方程的应用,解题的关键是熟练掌握列方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出方程
3.2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?考点:一元一次方程的应用.专题:应用题.分析:等量关系为:居民家庭用水=生产运营用水的3倍+0.6.解答:解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.
依题意,得5.8-x=3x+0.6,
解得:x=1.3,
∴5.8-x=5.8-1.3=4.5.
答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.点评:解题关键是弄清题意,找到合适的等量关系.本题也可根据“生产运营用水和居民家庭用水的总和为5.8亿立方米”来列等量关系.
4.小华将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入银行,若存款的年利率又下调到原来的一半,这样到期后可得本息和63元,求第一次存款的年利率(不计利息税).考点:一元一次方程的应用.专题:应用题;增长率问题.分析:要求存款的年利率先设出未知数,再通过等量关系就是两年的本金加上利息减去够买学习用品的钱等于最后的本息之和.解答:解:设第一次存款的年利率为x,则第二次存款的年利率为 x2,第一次的本息和为(100+100×x)元.
由题意,得(100+100×x-50)× x2+50+100x=63,
解得x=0.1或x= -135(舍去).
答:第一次存款的年利率为10%.点评:解题的关键要理解题的大意,特别是第二次到期的本息为50+100x,很多同学都会忽略100x,根据题目给出的条件
5.2008年北京奥运会,中国运动员获得金、银、铜牌共100枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚.问金、银、铜牌各多少枚?考点:一元一次方程的应用.分析:可设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,根据获得金、银、铜牌共100枚列出方程求解即可.解答:解:设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,(1分)
依题意得x+(x+7)+x+(x+7)+2=100(3分)
解得x=21,(5分)
所以x+7=21+7=28;21+28+2=51
答:金、银、铜牌分别为51枚、21枚、28枚.(6分)点评:考查一元一次方程的应用;得到各个奖牌数的等量关系是解决本题的易错点.
6.天骄超市和金帝超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度,在天骄超市累计购买500元商品后,发给天骄会员卡,再购买的商品按原价85%收费;在金帝超市购买300元的商品后,发给金帝会员卡,再购买的商品按原价90%收费,讨论顾客怎样选择商店购物能获得更大优惠?考点:一元一次方程的应用;一元一次不等式的应用.分析:根据题意可以分别对两家超市列出花费和购物金额x的关系式,然后比较两者大小,即可得出结论.解答:解:设顾客所花购物款为x元.
①当0≤x≤300时,顾客在两家超市购物都一样.
②当300<x≤500时,顾客在金帝超市购物能得更大优惠.
当x>500时,假设顾客在金帝超市购物能得更大优惠则300+0.9(x-300)<500+0.85(x-500)解得x<900.
③所以当500<x<900时,顾客在金帝超市购物能得更大优惠.同样可得:
④当x=900时,顾客在两家超市购物都一样.
⑤当x>900时,顾客在天骄超市购物能得更大优惠.点评:本题主要考查对于一元一次方程的应用以及一元一次不等式的掌握.
7.小王去新华书店买书,书店规定花20元办优惠卡后购书可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,问小王购买这些书的原价是多少?考点:一元一次方程的应用.专题:应用题;经济问题.分析:办卡费用加上打折后的书款应该等于书的原价加上节省下来的10元,由此数量关系可列方程进行解答.解答:解:设书的原价为x元,
由题可得:20+0.85x=x-10,
解得:x=200.
答:小王购买这些书的原价是200元.点评:解题关键是要读懂题目的意思,把实际问题转化成数学问题,然后根据题目给出的条件,找出合适的等量关系,列出方程组,再求解
8.A、B两城铁路长240千米,为使行驶时间减少20分,需要提速10千米/时,但在现有条件下安全行驶限速100千米/时,问能否实现提速目标.考点:一元一次方程的应用.专题:行程问题.分析:在提速前和提速后,行走的路程并没有发生变化,由此可列方程解答.解答:解法一
解:设提速前速度为每小时x千米,则需时间为 240x小时,
依题意得:(x+10)( 240x- 2060)=240,
解得:x1=-90(舍去),x2=80,
因为80<100,所以能实现提速目标.
解法二
解:设提提速后行驶为x千米/时,根据题意,得 240x-10- 240x= 2060去分母.
整理得x2-10x-7200=0.
解之得:x1=90,x2=-80
经检验,x1=90,x2=-80都是原方程的根.
但速度为负数不合题意,所以只取x=90.
由于x=90<100.所以能实现提速目标.
9.水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,某城市制定了居民每月每户用水标准8m3,超标部分加价收费,某户居民连续两个月的用水和水费分别是12m3,22元;10m3,16.2元,试求该市居民标准内用水每立方米收费是多少?超标部分每立方米收费是多少?考点:一元一次方程的应用.专题:应用题;经济问题.分析:标准内用水收费加上超标部分收费就是本月总费用,由此可列方程组进行求解.解答:解:设标准内用水每立方米收费是x元,超标部分每立方米收费是y元.
由题可得:8x+(12-8)y=22;8x+(10-8)y=16.2,
解得:x=1.3,y=2.9.
故该城市居民标准内用水每立方米收费1.3元,超标部分每立方米收费2.9元.
10.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?考点:一元一次方程的应用.专题:应用题;工程问题.分析:本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.解答:解:设严重缺水城市有x座,
依题意得:(4x-50)+x+2x=664.
解得:x=102.
答:严重缺水城市有102座.
11.目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度广州市教育统计手册).
(1)求目前广州市在校的小学生人数和初中生人数;
(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?考点:一元一次方程的应用.专题:工程问题.分析:(1)本题可设目前广州市在校的初中生人数为x万,因广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人,那幺小学生人数为:(2x+14)万,所以可列方程x+2x+14=128,解方程即可;
(2)在(1)的基础上利用“广州市政府的拨款=小学生人数×500+中学生人数×1000”即可求出答案.解答:解:(1)设初中生人数为x万,那幺小学生人数为(2x+14)万,
则x+2x+14=128
解得x=38
答:初中生人数为38万人,小学生人数为90万人.
(2)500×900 000+1000×380 000=830 000 000元,即8.3亿元.
答:广州市政府要为此拨款8.3亿元.
12.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下.如果买50支,比按原价购买可以便宜6元,那么每支铅笔的原价是多少元?考点:一元一次方程的应用.专题:应用题;经济问题.分析:等量关系为:原价×50×(1-80%)=6.由此可列出方程.解答:解:设每支铅笔的原价为x元,
依题意得:50x(1-0.8)=6,
解得:x=0.6.
答:故每支铅笔的原价是0.6元.
13.初三某班的一个综合实验活动小组去A,B两个车站调查前年和去年“春运”期间的客流量情况,如图是调查后小明与其它两位同学进行交流的情景,根据他们的对话,请你分别求出A,B两个车站去年“春运”期间的客流量.
考点:一元一次方程的应用.专题:阅读型.分析:所增加的百分比乘以基数即为增加的实际人数,由此可列方程进行解答.解答:解:设A站前年“春运”期间的客流量为x,则B站为(20-x),
由题意知:0.2x+0.1(20-x)=22.5-20,
解得:x=5
∴A站去年客流量为:1.2×5=6(万人)
∴B站人数为:22.5-6=16.5(万人)
答:A站去年“春运”期间的客流量为6万人,B站为16.5万人.
14.阅读下面对话:
小红妈:“售货员,请帮我买些梨.”
售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”
小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”
对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.
试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.考点:一元一次方程的应用.专题:阅读型.分析:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.根据苹果的重量比梨轻2.5千克这个等量关系列方程求解.解答:解:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.
则有: 30x=301.5x+2.5,
解得:x=4,
1.5x=6.
答:梨和苹果的单价分别为4元/千克和6元/千克.
15.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场?考点:一元一次方程的应用.专题:应用题;比赛问题.分析:球队赢球后得分加上输球得分应该等于总得分,即可列方程解应用题.解答:解:设球队赢了x场,则输了(16-x)场,
由题可得:2x+(16-x)×1=28
解得:x=12,
答:球队赢了12场,输了4场.
16.联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.
(1)如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?
(2)如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?考点:一元一次方程的应用.专题:应用题.分析:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第二次参加球类运到的人数,再根据题意列方程求解.
(2)在第二次参加球类运到的基础上,根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第三次参加球类运到的人数,根据题意列不等式求解.解答:解:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.
第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%
由题意得:x=x•(1-20%)+(400-x)•30%
解之得:x=240
(2)∵第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%= x2+120,
∴第三次参加球类活动的学生为:( x2+120)•(1-20%)+[400-( x2+120)]•30%= x4+180,
∴由 x4+180≥200得x≥80,
又当x=80时,第二次、第三次参加球类活动与田径类活动的人数均为整数.
答:(1)第一次参加球类活动的学生应有240名;(2)第一次参加球类活动的学生最少有80名.
17.学校综合实践活动小组的同学们乘车到天池山农科所进行社会调查,可供租用的车辆有两种:第一种可乘8人,第二种可乘4人.若只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满.
(1)参加本次社会调查的学生共多少名?
(2)已知:第一种车租金为300元/天,第二种车租金为200元/天.要使每个同学都有座位,并且租车费最少,应该怎样租车.考点:一元一次方程的应用.专题:应用题.分析:(1)要注意关键语“只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满”,根据两种坐法的不同来列出方程求解;
(2)要考虑到不同的租车方案,然后逐个比较,找出最佳方案.解答:解:(1)设参加本次社会调查的同学共x人,则4( x+48+3)=x,
解之得:x=28
答:参加本次社会调查的学生共28人.
(2)其租车方案为
①第一种车4辆,第二种车0辆;
②第一种车3辆,第二种车1辆;
③第一种车2辆,第二种车3辆;
④第一种车1辆,第二种车5辆;
⑤第一张车0辆,第二种车7辆.
比较后知:租第一种车3辆,第二种车1辆时费用最少,
其费用为1100元.
18.某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?考点:一元一次方程的应用.专题:经济问题.分析:由题意得,他进的包子数量应在50-80之间;等量关系为:(20×进货量+10×50)×每个的利润-(进货量-50)×10×每个赔的钱=600;据此列出方程解可得答案.解答:解:设这个数量是x个.
由题意得:(20x+500)×(1-0.6)-(x-50)×10×(0.6-0.2)=600,
解得:x=50.
故这个数量是50个.
19.小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.考点:一元一次方程的应用.专题:应用题;经济问题.分析:本题的关键语“随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元”,即随身听的单价=书包单价×4-8.依此等量关系列方程求解.解答:解:设随身听单价为x元,则书包的单价为(452-x)元,
列方程得:x=4(452-x)-8,
解得:x=360.
当x=360时,452-x=92.
20.(1)一种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?
(2)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么该厂六、七两月产量平均增长的百分率是多少?考点:一元一次方程的应用;一元二次方程的应用.专题:增长率问题;经济问题.分析:(1)设此商品按x折销售,根据商品进价和标价及利润间关系可得方程;
(2)设该厂六,七两月产量平均增长的百分率为x,根据产量的减少和增加可列方程求解.解答:解:(1)设此商品按x折销售.
600x=400(1+5%),
可求得x=0.7.
(2)设该厂六,七两月产量平均增长的百分率为x.
5月产量为500(1-10%)=450,则6月是450(1+x),7月为450(1+x)(1+x)=648.则:
(1+x)2= 648450=1.44,
1+x=1.2,
x=20%.
21.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价-进货价).问该文具每件的进货价是多少元?考点:一元一次方程的应用.专题:销售问题.分析:等量关系为:售价的7折-进价=利润0.2,细化为:(进价+2)×7折-进价=利润0.2,依此等量关系列方程求解即可.解答:解:设该文具每件的进货价是x元,
依题意得:70%•(x+2)-x=0.2
解得:x=4
答:该文具每件的进货价为4元.
近年来,宜宾市教育技术装备水平迅速提高,特别是以计算机为核心的现代化装备取得了突破性发展,中小学每百人计算机拥有量在全省处于领先位置,全市中小学装备领先的总台数由1996年的1040台直线上升到2000年的11600台,若1997到2000年每年比上一年增加的计算机台数都相同,按此速度继续增加,到2003年宜宾市中小学装备计算机的总台数是多少?考点:一元一次方程的应用.专题:增长率问题.分析:应先根据96年的台数+4年一共增加的台数=2000年的台数,求得每年的增长量,进而让11600加3年增加的台数即为2003年宜宾市中小学装备计算机的总台数.解答:解:设每年增加的计算机台数为x台,
则:1040+(2000-1996)x=11600,
解得x=2640,
∴2003年宜宾市中小学装备计算机的总台数为:11600+(2003-2000)×2640=19520(台).
答:2003年宜宾市中小学装备计算机的总台数是19520台.
23.某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本价应降低多少元?考点:一元一次方程的应用.专题:应用题;经济问题.分析:此题文字叙述量大,要审清题目,找到等量关系:销售利润(销售利润=销售价-成本价)保持不变,设该产品每件的成本价应降低x元,则每件产品销售价为510(1-4%)元,销售了(1+10%)m件,新销售利润为[510(1-4%)-(400-x)]×(1+10%)m元,原销售利润为(510-400)m元,列方程即可解得.解答:解:设该产品每件的成本价应降低x元,则根据题意得
[510(1-4%)-(400-x)]×m(1+10%)=m(510-400),
解这个方程得x=10.4.
答:该产品每件的成本价应降低10.4元.
24.为了鼓舞中国国奥队在2008年奥运会上取得好成绩,曙光体育器材厂赠送给中国国奥队一批足球.若足球队每人领一个则少6个球,每二人领一个则余6个球,问这批足球共有多少个?
某队员领到足球后十分高兴,就仔细研究起足球上的黑白块(如图),结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?考点:一元一次方程的应用.专题:应用题.分析:(1)根据题意可知本题中有两个不变的量,足球总数和总人数,要求的是足球数,所以第一问用总人数作为相等关系列方程即可;
(2)第二问可利用黑块与白块的数量比是3:5的关系列方程可求解.解答:解:(1)设有x个足球,
则有:x+6=2(x-6),
∴x=18;
所以这批足球共有18个;
(2)设白块有y块,
则3y=5×12,
∴y=20,
所以白块有20块.
25.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?考点:一元一次方程的应用.专题:工程问题.分析:设该年级的男生有x人,那么女生有(170-x)人,所以男生平均一天能挖树坑3x个,女生女生平均一天能种树7(170-x)棵,然后根据每个树坑种上一棵树即可列出方程解决问题.解答:解:设该年级的男生有x人,那么女生有(170-x)人,
依题意得:3x=7(170-x),
解得:x=119,
170-x=51.
答:该年级的男生有119人,那么女生有51人.
望采纳谢谢。

初一60道解方程应用题及答案

1.某中学修整草场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独做,需要5小时完成.如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少时间完成?
设初二学生还要工作x小时。
(1/7.5)+(1/5)x=1
x=10/3
共需10/3+1=4又1/3小时
2.甲骑车从A地到B地,乙骑车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.求AB两地路程.
设:AB距离为X,12时-10时=2小时,10时-8时=2小时
2*[(36*2)/2]=X-36
第一个2是8时到10时,共2小时
36*2是10时到12时有两次相距36千米,即两小时二人共走36*2千米
(36*2)/2就求出二人一小时共走多少千米,即二人速度和
根据“以知两人在上午8时同时出发,到上午10时,两人还相距36千米”这句话列出方程
结果
X=108
答:AB两地相距108千米
3一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?
解:设甲、乙两站距离为S千米,则有:
S/90=(S/2)/90+12/60+(S/2)/(90+10)
解得:S=360(千米)
答:甲乙两地距离为360千米。
4小明到外婆家去,若每小时行5千米,正好按预定时间到达,他走了全程的五分之一时,搭上了一辆每小时行40千米的汽车,因此比预定时间提前1小时24分钟到达,求小明与他外婆家的距离是多少千米
.解:设小明与他外婆家的距离为S千米,则有:
S/5=(S/5)/5+(4S/5)/40+(1+24/60)
解得:S=10(千米)
答:小明与他外婆家的距离为10千米
5桥上用绳子测桥高,把绳子对折后垂到水面时,尚余8尺。绳子折三折后垂到水面上尚余2尺,求桥高和绳长。
设桥高X 则方程为2(X+8)=3(X+2) 解得X=10 则桥高10尺 绳长为36尺
6两个连续的奇数和是40,这两个奇数分别是几?
设前一个奇数为X 则得方程 X+(X+2)=40 解得X=19,则一奇数为19 另一奇数为21
7某工厂有三个车间,第一车间占1/4,第二车间是第三车间的3/4,第一车间比第三车间少40人,三个车间共多少人?
设总人数为X 则第一车间人数为X/4 第二车间与第三车间总人数为(3X/4) 所以根据第二车间与第三车间的关系得知第三车间的人数为(3X/7)所以的方程:(3X/7)-(X/4)=40 解得X=224
8一项水利工程,甲队单独完成需要15天,乙队单独完成需要12天,若两队合作5天完成,剩下的工程由甲队做,甲队还需多少天才能完成?
解:设甲队还需x天才能完成。
5(1/15+1/12)+1/15x=1
3/4+1/15x =1
1/15x =1-3/4
x =15/4
9在甲处劳动的有31人,在乙处劳动的有20人,现调来18人支援,要使甲处劳动的人是乙处劳动的人数的2倍,应往甲.乙两处各调去多少人?
设调后甲的人数为X。乙为1/2X。
(X-31)+(1/2X-20)=18
X-31+1/2X-20=18
3/2X=69
X=46
X-31=15 1/2X-20=3
所以应往甲处调15人,应往乙处调3人。
10一只猴子有一堆桃子,第一天他吃了 桃子总数的二分之一 加一个,第二天吃了 剩下的二分之一加一个,第三天又吃了剩下的二分之一加一个 正好把这堆桃子吃完,请问这堆桃子一共有多少个?
解:设有X个桃子
X-(X-12X+1)-(X-21X+1)×12-(X-12X+1)×12×12=0
X=14
11一队学生去校外进行军事野营训练,他们以每小时三千米的速度行走,走了十八分的时候,学校要将一个紧急通知选给队长,通讯员从学校出发,骑自行车以十四千米每小时的速度按原路追上,通讯员用几小时可以追上学生队伍?
设通讯员用x小时可以追上学生队伍
3*(18/60)+3x=14x
x=9/110小时
12某工人原计划用26天生产一批零件,工作2天后,因改变操作方法,每天比原来多生产5个零件,结果提前4天完成任务,问原来每天生产多少个零件?这批零件一共多少个?
原来每天生产x个零件
26x=2x+(26-4-2)(x+5)
x=25
这批零件共=25*26=650
13一个游泳池有两个进水管A和B,和一个排水管C,单开A管3h可以住满水池,单开B管4h可以住满水池,单开C管6h可以放完一池水,若A管先单独开放半小时,B和C两管一同打开,问需要再过多少时间可以注入半池水?
设需要再过x小时可以注入半池水
(1/2+x)*1/3+1/4*x-1/6*x=1/2
x=0.8
0.8*60=48分钟
14学校举办“迎奥运”知识竞赛,设一.二.三等奖共12名,奖品发放方案如下:一等奖,一和福娃和一枚徽章。二等奖:一盒福娃。三等奖:一枚徽章。用于购买奖品的总费用为1020,小明在购买“福娃”和徽章前,了解到如下信息:两盒福娃与1枚徽章共315元。1盒福娃与3枚徽章共195元。1.求一盒福娃和一枚徽章各多少元?2.若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
设一盒福娃x元一枚徽章y元
得到方程组 2x+y=315 x+3y=195
x= 150 y=15
设二等奖a名 三等奖(10-a)名
165*2+150a+15(10-a)=1020
a=4
二等奖4名和三等奖6名
15小红撕下二月份的3张日历,每两张的日期之和分别是27,28,29,你能说出这三张日历的日期分别是什么吗?
设最小的一张为X,由于每两张的日期之和分别是27,28.29.所以这三张是连续的.所以有
X+(X+1)=27
得X=13
16小明和爸爸的年龄和是52岁,7年后爸爸的年龄是小明年龄的2倍多6岁,求小明今年的年龄?
.设小明今年的年龄为X岁.
则(2X+6-7)+(X-7)=52
得X=20
17某工程,甲单独做12天完成,乙单独做8天完成,现在由甲先做2天,乙再参加合作,求完成这项工程还需几天?
设还要X天则有方程:2/12+(1/12+1/8)*X=1
18侑一项工程,甲队独做需要10天完成,乙队独做需要30天完成.现在甲,乙两队合作完成这项工程,已知甲队休息了2天,乙队休息了8天,但甲乙两队没有再同一天休息过,那么两队共同工作了多少天?
设共同工作了X天则有方程:2/30+8/10+(1/10+1/30)*X=1
19学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
解 设应调往甲处 人,根据题意,得27+ =2(18- ).解这个方程,得 =3.
答:从乙处调3人到甲处.
20学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?
解 设应调往甲处 人,根据题意,得27+ =2(18+20- )+2.解这个方程,得 =17.∴20- =3.答:应调往甲处17人,乙处3人.

3到5年级的解方程应用题(35道)

3.不等式组 的最小整数解是 ( )
A、0 B、1 C、2 D、-1
4.对于任意实数m,方程 的根的情况是 ( )
A、有两个相等的实数根 B、没有实数根
C、有实数根且都是正数 D、有两个不相等的实数根
23.(8分)解方程:
7.不等式2x≥x+2的解集是 .
(3)解方程: =1.
12.不等式4-3x>0的解集是( )
A. B. C. D.
15.已知方程 有两个相等的实数根,则m的值为________;
20.(本小题满分6分)列方程(组)解应用题:某校初三(2)班的师生到距离10千米的山区植树,出发1个半小时后,张锦同学骑自行车从学校按原路追赶队伍,结果他们同时到达植树地点.如果张锦同学骑车的速度比队伍步行的速度的2倍还多2千米.
(1)求骑车与步行的速度各是多少?
(2)如果张锦同学要提前10分钟到达植树地点,那么他骑车的速度应比原速度快
多少?
26. 甲、乙两名工人接受相同数量的生产任务。开始时,乙比甲每天少做4件,乙比甲多用2天时间,这样甲、乙两人各剩120件;随后,乙改进了生产技术,每天比原来多做6件,而甲每天的工作量不变,结果两人完成全部生产任务所用时间相同。求原来甲、乙两人每天各做多少件?
24. 用换元法解方程
9.不等式 的解集在数轴上表示正确的是( )

19.(本题满分6分)用换元法解方程: - =3
五、(本题满分6分)
22.列方程或方程组解应用题:某山区有23名中、小学生因失学需要捐助。资助一名中学生的学习费用需a元,资助一名小学生的学习费用需b元。某校学生积极捐款,初中各年级学生捐款数额与用其恰好捐助贫困中学生人数和小学生人数的部分情况如下表:
年级 捐款额(元) 捐助贫困中学生人数(名) 捐助贫困小学生人数(名)
初一 4000 2 4
初二 4200 3 3
初三 7400
⑴ 求a、b的值;
⑵ 初三年级学生的捐款数解决了其余贫困中、小学生的学习费用。请将初三年级学生可捐款贫困中、小学生的人数直接填入上表中(不需写出计算过程)。
23.已知:关于x的两个方程
2x2+(m+4)x+m-4=0 ……①
与mx2+(n-2)x+m-3=0 ……②
方程①有两个不相等的负实数根,方程②有两个实数根.
⑴ 求证方程②的两根符号相同;
⑵ 设方程② 的两根分别为α、β,若α∶β=1∶2,且n为整数,求m的最小整数值.
3.不等式2x-1>0的解集是_________.
13.设x1、x2是方程 的两根,则 的值是( )
A.2 B.-2 C. D.
18.解方程组:
23.小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.
12、下列一元二次方程中,有实数根的是:( )
A、x2-x+1=0 B、x2-2x+3=0 C、x2+x-1=0 D、x2+4=0
25、长沙市某公园的门票价格如下表所示:
购票人数 1~50人 51~100人 100人以上
票价 10元/人 8元/人 5元/人
某校初三年级甲、乙两个班共100多人去该公园举行毕业联欢活动,其中甲班有50多人,乙班不足50人.如果以班为单位分别买门票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元.问甲、乙两班分别有多少人?
22、解不等式组
6.已知一元二次方程 的两个根是 、 ,则 = ,
= , = 。
14.用换元法解方程 时,设 ,则原方程可化为 【 】
(A) (B)
(C) (D)
15.关于 的一元二次方程 根的情况是 【 】
(A)有两个不相等实数根 (B)有两个相等实数根
(C)没有实数根 (D)根的情况无法判定
21.解不等式组: 22.解方程组:
30.仔细阅读下列材料,然后解答问题。
某商场在促销期间规定:商场内所有商品按标价的80%出售。同时当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:
消费金额 (元)的范围

获得奖卷的金额(元) 30 60 100 130 …
根据上述促销方法,顾客在商场内购物可以获得双重优惠。例如,购买标价为450元的商品,则消费金额为 元,获得的优惠额为 元。设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价。
(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到 的优惠率?
3.不等式组 的解集是__________.
6.若代数式 的值为0,则x=____________.
17.方程 的左边配成完全平方后所得方程为 ( )
A. B. C. D. 以上答案都不对
五、应用题(7分)25.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.
(1)求降低的百分率;
(2)若小红家有4人,明年小红家减少多少农业税?
(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税.
4、一元二次方程 的根的情况是 ( )
A、有一个实数根 B、有两个相等的实数根
C、有两个不相等的实数根 D、没有实数根
10、关于x的一元二次方程 的两根为 , ,则 分解因式的结果为_____________________________________;
17、解方程组
18、某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成。求该工程队原计划每周修建多少米?
3.关于x的方程 是一元二次方程,则( ).
A.a>0 B.a≠0 C.a=1 D.a≥0
5.方程(x+1)(x-2)=0的根是( ).
A.x=-1 B.x=2
C. D.
13.方程组 的解是( ).
A. B.
C. D.
14.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元.设平均每次降价的百分率为x,则列出方程正确的是( ).
A. B.
C. D.
18.已知2是方程 的一个根,则2a-1=__________.
21.(本题5分)
解方程: .
23.(本题8分)
如果关于x的方程 没有实数根,试判断关于x的方程 的根的情况.
3、若 , 是方程 的两个根,则 ;
15、不等式组 的解集是( )
A、 ; B、 ; C、 ; D、 ;
21、(8分)用换元法解方程:

解;
2、方程 的解是( )
A、 B、 C、 D、
16、已知方程 的两根分别为 、 ,则 的值是( A )
A、 B、 C、 D、
19、已知方程 有两个不相等的实数根,则 、 满足的关系式是( B )
A、 B、 C、 D、
29、方程 的解是 ;
23、不等式组 的解集是 。
31、(7分)解下列方程:
(1) (2)
9.解方程 时.设 ,则原方程化为y的整式方程是_____________________
13. 解方程组
14. 解不等式组

18.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的平均月增长率.
20. 已知实数a、b分别满足 .求 的值.
3.不等式组 的整数是( )
A、 -1,0,1 B、 -1,1 C、 -1,0 D、 0,1
22.(本题5分)
用换元法解方程:x2+2x-2= .
27.(本题6分)
“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.
⑴ 若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.
⑵ 若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.
7.不等式组 的解集是
A.x>3 B.x<2 C.2<x<3 D.x>3 或x<2
8.一元二次方程x2-x+2=0的根的情况是
A.有两个相等的实数根 B.有两个不相等的实数根
C.无实数根 D.无法确定
9.当使用换元法解方程 时,若设 ,则原方程可变形为
A.y2+2y+3=0 B.y2-2y+3=0
C.y2+2y-3=0 D.y2-2y-3=0
23.(4分)解方程:
4. 把分式方程 的两边同时乘以(x-2), 约去分母,得
A、1-(1-x)=1 B、1+(1-x)=1
C、1-(1-x)=x-2 D、1+(1-x)=x-2
15.今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利. 据估计,今年全省荔枝总产量为50 000吨,销售收入为61 000万元. 已知“妃子笑”品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨. 如果设“妃子笑”荔枝产量为x吨,其它品种荔枝产量为y吨,那么可列出方程组为 .
26.(本题满分8分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. 现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
12. 方程 的正根的个数为
(A)0个 (B)1个 (C)2个 (D)3个
19. 在关于x1,x2,x3的方程组 中,已知 ,那么将x1,x2,x3从大到小排起来应该是____________
4. 若x1,x2是一元二次方程2x2-3x+1=0的两个根,则 的值是
A. B. C. D.
5. 图1所示的电路的总电阻为10Ω,若R1=2R2,则R1,R2的值分别是
A.R1=30Ω,R2=15Ω B.R1= Ω,R2= Ω
C.R1=15Ω,R2=30Ω D.R1= Ω,R2= Ω
13. 不等式组 的解集是 .
16. 用换元法解分式方程 时,如果设 ,那么原方程可化为关于y的一元二次方程的一般形式是 .
5. 如图2,天平右盘中的每个砝码的质量都是1g,则物体A
的质量m(g)的取值范围,在数轴上可表示为
8. 把一个小球以20m/s的速度竖直向上弹出,它在空中的高度h(m)
与时间t(s)满足关系:h=20t-5t2.当h=20时,小球的运动时间为
A.20s B.2s
C. D.
2.如果关于x的方程x2+mx+1=0的两个根的差为1,那么m等于【 】
A.±2 B.± C.± D.±
20.解关于x、y的方程组
4.不等式组 的整数解为____________
9.某足协举办了一次足球比赛,记分规则为:胜一场积3分,负一场积0分,平一场积1分。若甲队比赛5场后积7分,则甲队共平_________ 场。
14.若│x+y-5│+(xy-6)2=0,则x2+y2 的值为 ( )
A、13 B、26 C、28 D、37
19.某超市推出如下优惠方案:⑴ 一次性购物不超过100元不享受优惠。⑵ 一次性购物超过100元,但不超过300元一律9折,⑶ 一次性购物超过300元一律8折。王波两次购物分别付款80元、252元。如果他一次性购买与上两次相同的商品,则应付款 ( )
A、228元 B、332元 C、228或316元 D、332或363元
22.(6分)已知方程组 有两个不相等的解.
⑴求k的取值范围。
⑵若方程的两个实数解为 和 ,是否存在实数k,使x1+x1x2+x2=1,若存在,求出k的值;若不存在,请说明理由。
6.若关于x的一元二次方程 有实数根,则k的取值范围是( )
A、k>-1 B、k≥-1 C、k>-1且k≠0 D、k≥-1且k≠0
8. 方程 =1的根是
A、 B、 C、 D、
21.(本题满分8分)
我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?
6. 如果关于x的不等式 (a+1) x>a+1的解集为x<1,那么a的取值范围是( )
A、 a>0 B、 a<0 C、 a>-1 D、 a<-1
21 (本小题满分6分)
已知关于x的方程 kx2-2 (k+1) x+k-1=0 有两个不相等的实数根,
(1) 求k的取值范围;
(2) 是否存在实数k,使此方程的两个实数根的倒数和等于0 ?若存在,求出k的值;若不存在,说明理由.
3、若方程x2-4x+m=0有两个相等的实数根,则m的值是( )
A、 4 B、 -4 C、 D、 -
16、如果一个矩形的长和宽是一元二次方程x2-10x+20=0的两个根,那么这个矩形的周长是 。
2、不等式组 的解集是( )
A、x>1 B、 x<6 C、1<x<6 D、 x<1或x>6
6、一组学生去春游,预计共需费用120元,后来又有2个参加进来,部费用不变,于是每人可少分摊3元,原来这组学生人数是( )
A、15人 B、 10人 C、 12人 D、8人
11、如果y= ,那么用y的代数式表示x为___________________;
15、(本小题满分6分) 解方程: ;
17、(本小题满分6分)
阅读下题的解题过程:
已知a、b、c是△ABC的三边,且满足 ,试判断△ABC的形状。
解:∵ (A)
∴ (B)
∴ (C)
∴ △ABC是直角三角形 (D)
问: ⑴ 上述解题过程,从哪一步开始出现错误?请写出该步的代号 ;
⑵ 错误的原因为 ;
⑶ 本题正确的结论是 ;
7. 如果不等式组 的解集是 ,那么m的值是 ( )
A、3 B、1 C、-1 D、-3
20. (本题满分7分)为了解决下岗职工生活困难问题,在近两年的财政改革中,市政府采取一系列政策措施,据统计,2002年市财政用于解决下岗职工生活困难资金160万元,预计2004年将达到176.4万元,求2002年到2004年市财政每年投入解决下岗职工生活困难资金的平均增长率.(参考数据:1.032=1.0609 1.042=1.0816 1.052=1.1025 1.062=1.1236)
8. 现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排
A、4辆 B、5辆 C、6辆 D、7辆
11. 若 的值等于1,且x<0,则x=_______.
21. (本小题满分10分)
为了改善城乡人民生产、生活环境,我市投入大量资金,治理竹皮河污染,在城郊建立了一个综合性污水处理厂,设库池中存有待处理的污水 吨,又从城区流入库池的污水按每小时 吨的固定流量增加.如果同时开动2台机组需30小时处理完污水,同时开动4台机组需10小时处理完污水.若要求5小时内将污水处理完毕,那么至少要同时开动多少台机组?

四年级下册解方程应用题及答案!快!26!急!

1、父亲的年龄比女儿大27岁,恰好是女儿的4倍。父亲和女儿各多少岁?
解设:女儿为x岁。
4x-x=27
3x =27
x=9
父亲:9×4=36(岁)
答:女儿9岁,父亲36岁。
2、地球绕太阳一周约365天,比水星绕太阳一周所需时间的5倍少75天。水星绕太阳一周需多少天? 解设:水星绕太阳一周需x天。
5x-75=365
5x-75+75=365+75
5x=440
5x÷5=440÷5
x=88
答:水星绕太阳一周需88天。
3、两位邮递员分别骑摩托车和自行车,同时从相距3000米的两地相向而行,3分钟后相遇。摩托车的速度是800米/分,自行车的速度是多少?
解设:自行车的速度为x米/分。
3(800+x)=3000
3(800+x)÷3=3000÷3
800+x=1000
800+x-800=1000-800
x=200
答:自行车的速度为200米/分。
4、有1元、2元、5元面额的人民币共320元,三种人民币的张数相同。三种人民币各有几张? 解设:三种人民币各有x张。
1x+2x+5x=320
8x=320
8x÷8 =320÷8
x=40
答:三种人民币各有40张。
5、小芳和小兰共储蓄505元,小兰储蓄的金额比小芳的3倍少15元。两人各储蓄多少元? 解设:小芳储蓄x元。
x+3x-15=505
4x+15=505+15
4x=520
4x÷4=520÷4
x=130
小兰:130×3-15=375(元)
答:小芳储蓄130元,小兰储蓄375元。

  
永远跟党走
  • 如果你觉得本站很棒,可以通过扫码支付打赏哦!

    • 微信收款码
    • 支付宝收款码