已知数轴上有三点A,B,C 已知:A=5a2+3,B=3a2-2a2b,C=a2+6a2b-2,求a=-1,b=2时,求A-2B+C的值
已知:A=5a2+3,B=3a2-2a2b,C=a2+6a2b-2,求a=-1,b=2时,求A-2B+C的值
已知:A=5a2+3,B=3a2-2a2b,C=a2+6a2b-2,求a=-1,b=2时,求A-2B+C的值
A-B+C=(5a2+3)-2(3a2-2a2b)+(a2+6a2b-2)
=5a2+3-6a2+4a2b+a2+6a2b-2
=(5a2-6a2+a2)+(4a2b+6a2b)+(3-2)
=10a2b+1,
当a=-1,b=2时,10a2b+1=10×(-1)2×2+1=21.
1+2+1=4 1+2+3+2+1=9 1+2+3+4+3+2+1=16 1+2+3+4+5+4+3+2+1=25 1+2+3+、、、+99+100+99+、、、+3+2+1=几
1+2+1=4=2²
1+2+3+2+1=9=3²
1+2+3+4+3+2+1=16=4²
1+2+3+4+5+4+3+2+1=25=5²
......
1+2+3+...+99+100+99+...+3+2+1=10000=100²
观察前面几个式子可以发现,相加所得的结果等于最中间的那个数的平方。
因式分解(1)1-36b^2(2)12x^2-3y^2(3)0.49p^2-144 (4)(2x+y)^2-(x+2y)^2
(1)1-36b^2=(1+6b)(1-6b)
(2)12x^2-3y^2
=3(4x²-y²)
=3(2x+y)(2x-y)
(3)0.49p^2-144=(0.7p+12)(0.7p-12)
(4)(2x+y)^2-(x+2y)^2
=[(2x+y)+(x+2y)][(2x+y)-(x+2y)]
=(3x+3y)(x-y)
=3(x+y)(x-y)
在合适的地方插入运算子号,使等式成立 ⑴12345=10 ⑵12345=10 ⑶12345=10 ⑷2()2()2()2=1 ⑸2()2()2()2=2
1、12-3-4+5=10
2、(1+2)/3+4+5=10
3、(1+2+3-4)*5=10
4、2*2/2/2=1
5、(2-2)*2+2=2
化简:(1)2(2a2+9b)+3(-5a2-4b);(2)2a3b?12a3b?a2b+12a2b?ab2
(1)原式=4a2+18b-15a2-12b
=(4-15)a2+(18-12)b
=-11a2+6b;
(2)原式=(2-
1 2)a3b+(-1+
1 2)a2b-ab2=
3 2a3b+(-
1 2)a2b-ab2
=
a3b-
1 2a2b-ab2.
已知A=2a^2b-ab^2,B=-a^2b+2ab^2。(1)求5A+4B (2)若|a+2|+(3-b)^2=0,求5A+4B的值
(1)5A+4B
=5(2a²b-ab²)+4(-a²b+2ab²)
=(10a²b-5ab²)+(-4a²b+8ab²)
=10a²b-5ab²-4a²b+8ab²
=6a²b+3ab²
(2)∵|a+2|+(3-b)²=0
∴a+2=0,3-b=0
∴a=-2,b=3
∴5A+4B
=6a²b+3ab²
=6x(-2)²x3+3x(-2)x3²
=72-54
=18
(3)a²b+ab²=A+B
若a,b,c>0,求证:(Ⅰ)a2+b2ab+b2+c2bc+c2+a2ca≥6; (Ⅱ)a+b2?b+c2?c+a2≥abc
证明:(Ⅰ)∵a,b,c>0,
∴
+
b2+c2 bc+
c2+a2 ca≥
2ab ab+
2bc bc+
2ca ca=2+2+2=6,
即
+
b2+c2 bc+
c2+a2 ca≥6.
(Ⅱ)
?
b+c 2?
c+a 2≥
2 ab 2?
2 bc 2?

2 ca 2
=
ab?
化简求值:若(x+3) 2 +|y-2|=0,求代数式x 2 y-[2xy 2 -2(xy 2 -x 2 y)+x 2 y]的值
x 2 y-[2xy 2 -2(xy 2 -x 2 y)+x 2 y]=x 2 y-(2xy 2 -2xy 2 +2x 2 y+x 2 y)
=x 2 y-2xy 2 +2xy 2 -2x 2 y-x 2 y
=-2x 2 y,
∵(x+3) 2 +|y-2|=0,
∴x+3=0且y-2=0,
解得:x=-3,y=2,
则当x=-3,y=2时,原式=-2×9×2=-36.
matlab中怎么计算x='-(a^2*c-b*d^2-a^2*e+c*d^2-2*a*c*d+2*a*d*e)/(a^3*d^2-2*a^2*d^3+a*d^4)'
a=10
b=0.01
c=0.002
d=7
e=0.0494
x=-(a^2*c-b*d^2-a^2*e+c*d^2-2*a*c*d+2*a*d*e)/(a^3*d^2-2*a^2*d^3+a*d^4)
(2*5+2)(4*7+2)(6*9+2)....(100*103+2)/(1*4+2)(3*6+2)(5*8+2)....(99*102+2)得多少,为什么
由((2k)(2k+3)+2)/((2k-1)*(2k+2)+2)=((2k)^2+3(2k)+2)/((2k)^2+(2k))
=((2k+1)(2k+2))/((2k)(2k+1))=(2k+2)/(2k)=(k+1)/k
(2*5+2)(4*7+2)(6*9+2)....(100*103+2)/(1*4+2)(3*6+2)(5*8+2)....(99*102+2)
=(2/1))*(3/2)*(4/3)*...*(51/50)=51/1=51