二元一次方程题目大全 二元一次方程式的例题及解题方法及答案
二元一次方程式的例题及解题方法及答案
二元一次方程式的例题及解题方法及答案
二元一次方程组的定义含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。标准二元一次方程组包含六个系数,两个未知数,形式为:
式1,ax+by=c
式2,a2x+b2y=c2
方程解法
代入消元法
用代入消元法的一般步骤是:二元一次方程组1、选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;
2、将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
3、解这个一元一次方程,求出 x 或 y 值;
4、将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;
5、把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
举例:
解方程组 :
x+y=5①
6x+13y=89②
解:由①得
x=5-y③
把③代入②,得
6(5-y)+13y=89
即 y=59/7
把y=59/7代入③,得
x=5-59/7
即 x=-24/7
∴ x=-24/7
y=59/7 为方程组的解。我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法
加减消元法
用加减法消元的一般步骤为:
1、在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
2、在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
3、解这个一元一次方程;
4、将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
5、把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
举例:
解方程组:
x+y=9①
x-y=5②
解:①+②
2x=14
即 x=7
把x=7代入①,得
7+y=9
解,得:y=2
∴ x=7
y=2 为方程组的解。利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加(或相减),以消去这个未知数,是方程只含有一个未知数而得以求解。像这种解二元一次方程组的方法叫做加减消元法
换元法
举例:
(x+5)+(y-4)=8①
(x+5)-(y-4)=4②
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
设参数法
举例:
x:y=1:4
5x+6y=29②
令x=t,y=4t
方程②可写为:
5t+6*4t=29
29t=29
t=1
所以x=1,y=4
二元一次方程式解题方法
解:
二元一次方程,一般要2个,组成二元一次方程组,来解方程组
主要有2中种方法:
(1)加减消元法
(2)代入消元法
一般情况下有唯一的一组解
就是x的解有一个数字,对于的y解也只有一个数字。
二元一次方程式的解题过程
二元一次方程组(一)
一、重点、难点
1、二元一次方程及其解集
(1)含有两个未知数,并且未知数项的次数是1的整式方程叫二元一次方程.
(2)二元一次方程的解是无数多组.
2、二元一次方程组和它的解
(1)含有两个相同未知量的两个二元一次方程合在一起,就组成了一个二元一次方程组.
(2)使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值叫做二元一次方程组的解.
3、二元一次方程组的解法
(1)代入消元法:把其中的一个方程的某一个未知数用含有另一个未知数的代数式表示,然后代入另一个方程,就可以消去一个未知数.
(2)加减消元法:先利用等式的性质,用适当的数同乘以需要变形的方程的两边,使两个方程中某个未知数的系数的绝对值相等,然后把两个方程的两边分别相加或相减,就可以消去这个未知数.
4、三元一次方程组及其解法
(1)含有三个未知数,每个方程的未知数的次数都是1,并且是由三个方程组成的方程组叫做三元一次方程组.
(2)解三元一次方程组的基本思想是用消元的方法把“三元”转化为“二元”(将未知问题转化为已知问题,再将“二元”转化为“一元”).
二、例题分析:
例1: 在方程2x-3y=6中,1)用含x的代数式表示y.2)用含y的代数式表示x.
答案:1)y= x-2; 2)x=3+ y
例2:已知x+y=0,且|x|=2,求y+2的值.
解:∵|x|=2
∴x=2,或x=-2
又∵x+y=0
∴y=-2,或y=2
故y+2=0,或y+2=4
例3:已知方程组 的解是 ,求a与b的值
分析:方程组的解就是适合原方程组,所以将 代入方程可以得到关于a,b的新的方程。
解:因为方程组
的解是
所以
(1)×2得2a-4=2b (3)
(3)-(2)得-5=2b-2
∴b=-
将b=- 代入(1)得a=
∴
答案:a= , b=-
例4:方程x+3y=10在正整数范围内的解有_____组,它们是________________。
答案:3;
例5:把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______.
答案:3x-5y+17=0
例6:已知关于x,y的方程(k2-1)x2+(k+1)x+(k-7)y=k+2。
当 k=_____时,方程为一元一次方程,
当 k=_____时,方程为二元一次方程。
分析:题目中没有规定未知数,所以x,y都可以。因此注意分两种可能。
解:第一问∵关于x,y的方程(k2-1)x2+(k+1)x+(k-7)y=k+2为一元一次方程,
∴ (1)或 (2)
方程组(1)的解为k=-1,(2)无解
∴当k=-1时原方程为一元一次方程
第二问∵关于x,y的方程(k2-1)x2+(k+1)x+(k-7)y=k+2为二元一次方程
∴
解得k=1
∴当k=1时原方程为二元一次方程
例7:二元一次方程组 的解中x与y互为相反数,求a的值
解:∵原方程组的解中x与y互为相反数
∴x=-y (1)
将(1)代入原方程组,得
∴a=
二元一次方程组(二)
一、对应用题的观察和分析
利用二元一次方程组解有关的应用题时,对应用题进行观察和分析,要着重注意如下三点:
(1)题中有哪几个未知数(包括明显的未知数和隐含的未知数)?
(2)题中的未知数与已知内容之间有哪几个相等关系(包括明显的相等关系和隐含的相等关系)?——题中有几个未知数,一般就要找出几个相等关系.
(3)设立哪几个未知数,利用哪几个相等关系,可以较方便地把其余未知数用所设未知数的代数式表示出来?(利用剩下的等量关系列方程组.)
二、常见几类应用题及其基本数量关系
明确各类应用题中的基本数量关系,是正确列出方程的关键.常遇到的几类应用题及其基本关系如下:
1.行程问题:基本关系式为: 速度×时间=距离
2.工程问题:基本关系式为:
工作效率×工作时间=工作总量
计划数量×超额百分数=超额数量
计划数量×实际完成百分数=实际数量
3.百分比浓度问题:基本关系式为: 溶液×百分比浓度=溶质
4.混合物问题:基本关系式为:
各种混合物重量之和=混合后的总重量
混合前纯物重量=混合后纯物重量
混合物重量×含纯物的百分数=纯物的重量
5.航行问题:基本关系式为:
静水速度+水速=顺水速度
静水速度-水速=逆水速度
6.数字问题要注意各数位上的数字与数位的关系.
7.倍比问题,要注意一些基本关系术语,如:倍、分、大、小等.
三、例题精析
如何分析应用题:
例1. 某单位外出参观.若每辆汽车坐45人,那么15人没有座位;若每辆汽车坐 60人,则恰好空出一辆汽车,问共需几辆汽车,该单位有多少人?
思考如下:
(1)题目中的已知条件是什么?
(2)“有人没有座位”是指什么意思?“有空座位”是指什么意思?3.基于上述分析,那么已知条件“每辆车坐45人,15人没有座位”可理解成什么?“每辆车坐60人,恰好空出一辆车”又可理解成什么?
解:设该单位共有x辆车,y个人.依题意,得
解这个方程组,得
答:该单位共有5辆车,240人.
例2. 汽车从甲地到乙地,若每小时行驶45千米,就要延误 小时到达;若每小时行驶50千米,就可以提前 小时到达。求甲、乙两地间的距离及原计划行驶的时间。
思考问题:
(1)路程、速度、时间三者关系是什么?
(2)本题中的“延误”和“提前”都是以什么为标准的?
(3)基于上述分析,那么已知条件“汽车每小时行使45千米,则要延误 小时到达目的地”可理解成什么?已知条件“若每小时行驶50千米,就可以提前 小时到达目的地”又可理解成什么?
解:设甲、乙两地的距离为x千米,原计划行驶时间为y小时.依题意,得
解这个方程组,得
答:甲、乙两地间的距离是450千米,原计划行使时间为 小时。
例3. 甲、乙两人在周长是400米的环形跑道上散步.若两人从同地同时背道而行,则经过2分钟就相遇.若两人从同地同时同向而行,则经过20分钟后两人相遇.已知甲的速度较快,求二人散步时的速度.(只列方程,不求出)
分析:这个问题是环形线上的相遇、追及问题.其中有两个未知数:甲、乙二人各自的速度.有两个相等关系,即
(1)背向而行:两次相遇间甲、乙的行程之和=400米;
(2)同向而行:两次相遇间甲、乙的行程之差=400米.
解:设甲人速度为每分钟x米,乙人速度为每分钟行走y米.依题意,得
四、如何设未知数
列方程解应用题的第一步是设未知数,设未知数的方法很多,有时可直接设所求量为未知数,有时应间接地设未知数,还有的时候需要增设辅助未知数.那么,如何巧设未知数,以达到迅速解题的目的呢?
直接设所求量为未知数
例1. A,B两地相距 20千米.甲、乙两人分别从A,B两地同时相向而行,两小时后在途中相遇,然后甲返回A地,乙仍继续前进,当甲回到A地时,乙离A地还有2千米.求甲、乙的速度.
分析:这个问题是直线行驶中的相遇、追及问题.其中设两个未知数:甲、乙各自的速度,有两个相等关系.
解:设甲人的速度是每小时行x千米,乙人的速度是每小时y千米.依题意,得
解这个方程组,得
合理选择,间接设元
许多同学在解应用题时只考虑题目要求什么就设什么为未知数.这种方法有时很难寻找已知量与未知量之间的相等关系.因此,我们应根据题目条件选择与要求的未知量有关的某个量为未知数,以便找出符合题意的相等关系,从而达到解题的目的.
例2. 从夏令营到学校,先下山然后走平路,某同学先骑自行车以每小时12千米的速度下山,而以每小时9千米的速度通过平路,到达学校共用55分钟,他回来的时候以每小时8千米的速度通过平路而以每小时4千米的速度上山回到夏令营用了1 小时。从夏令营到学校有多少千米?
分析:根据题设条件,若设山路长为未知数x,则由来回的平路长相等得方程:
9 ;
同样可设平路长为未知数,由来回山路长相等得方程 12
还可设山路长和平路长分别为x千米,y千米,由来回的时间关系建立二元一次方程组
或设下山和上山的时间分别为x小时,y小时.由来回山路长和平路长分别相等得到二元一次方程组
设而不求,巧用辅助量
当应用题中涉及的量较多,各个量之间的关系又不明显时,可适当地增设辅助未知数,目的不是要具体地求出它们的值,而是以此作桥梁,沟通各个数量之间的关系,为列方程(组)创造条件.在解题过程中需将辅助未知数消去,以便求出所需未知数的值.
例1. 一客轮逆水行驶,船上一乘客掉了一件物品,浮在水面上,等乘客发现后,轮船立即掉头去追,已知轮船从掉头到追上共用5分钟,问乘客丢失了物品,是几分钟后发现的?
解:设x分钟后发现掉了物品,船静水速为V1,水速为V2,由题意得
(x+5)V2+x(V1-V2)=5(V1+V2),
xV2+5V2+xV1-xV2=5V1+5V2,
xV1=5V1,
∵V1≠0,∴x=5.
答:乘客5分钟后发现掉了物品.
注:这里的辅助未知数是V1和V2.
二元一次方程的解题方法?
二元一次方程组知识点归纳及解题技巧汇总
把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。
有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
解二元一次方程式的诀窍
解一元二次方程的方法:
①因式分解。即将方程ax^2+bx+c=0(a≠0)通过因式分解变为a(x-x1)(x-x2)=0,则x1和x2是方程的两根。
②求根公式法。对一元二次方程ax^2+bx+c=0(a≠0),首先求其判别式Δ=b^2-4ac。若Δ>0,则方程有两不等实根,由求根公式,两根为x=[-b±√(b^2-4ac)]/(2a);若Δ=0,则方程有两相等实根x=-b/2a;若Δ<0,则方程无实根。

2X+4Y=100二元一次方程式的解题步骤
2x+4y=100
函数式为y=-1/2x+25
方程的解是在y=-1/2x+25这条直线上点
二元一次方程组解题方法
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
例:解方程组 2x+5y=13 ①
3x-5y=7 ②
提示:①式中的5y和②式中的-5y是互为相反数的
分析:(2x + 5y)+(3x - 5y)=13 + 7
①左边+ ②左边 = ①左边+②左边
2x+5y +3x - 5y=20
5x+0y =20
5x=20
解:由①+②得: 5x=20
x=4
把x=4代入①,得y=1
所以原方程组的解是 x=4
y=1
求解二元一次方程组的所有解题方法【带例题】
主要分消元法和换元法,消元又分代入和加减。
代入消元法
(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法.
(2)代入法解二元一次方程组的步骤
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边).
例题:
{x-y=3 ①
{3x-8y=4②
由①得x=y+3③
③代入②得
3(y+3)-8y=4
y=1
把y=1带入③
得x=4
则:这个二元一次方程组的解
{x=4
{y=1
加减消元法
(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.
(2)加减法解二元一次方程组的步骤
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;
②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
如:
{5x+3y=9①
{10x+5y=12②
把①扩大2倍得到③
10x+6y=18
③-②得:
10x+6y-(10x+5y)=18-12
y=6
再把y=带入①.②或③中
解之得:{x=-1.8
{y=6
换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
比如(x+y)/2-(x-y)/3=6
3(x+y)=4(x-y)
解:设x+y为a,x-y为b
原=a/2-b/3=
y=35
把y=35代入②得
x=-80
x=-80
是方程组的解
y=35
二元一次方程式题目
蒂凡尼:成就女人梦想熙熙攘攘的纽约第五大街上,身着一袭纤瘦黑衣的奥黛丽·赫本,颈上戴着廉价的珠宝项链,手里捧着面包圈痴痴地凝望着TIFFANY专卖店玻璃窗里的世界:那是一个拥有华美珠宝和蒂凡尼早餐的世界,一个更幸福、更奢华、更绚丽的世界。有一天,她也能得到它吗?——电影《蒂凡尼的早餐》相信所有的女人都有和赫本一样的梦想:期待进入蒂凡尼的世界。蒂凡尼,总是以爱与美、罗曼与梦想为主题,充满官能的美和柔软纤细的个性,满足了女人所有的幻想和欲望。平凡到华美的蜕变查尔斯·刘易斯·蒂凡尼信奉:靠艺术赚钱,但艺术价值永恒。带着这个信念,1937年,这个美国康涅狄格州磨坊主的儿子来到纽约百老汇,开了一家不起眼的小铺子,经营文具和织品,后转为经营珠宝首饰,几经变迁最终成为美国首屈一指的高档珠宝商店——蒂凡尼珠宝首饰公司,其实力堪与欧洲的珠宝王朝一争高下,名声甚至超过了巴黎的名牌卡地亚。查尔斯自己则赢得了“钻石之王”的桂冠。蒂凡尼拥有以完美无瑕著称的精湛的工艺。早期的蒂凡尼工作室发明了独一无二的钻石切割工艺,能使钻石闪烁出更加夺目的光彩。1877年,世界上最大、最完美的黄色彩钻在南非出土。蒂凡尼购得这颗彩钻后,将其切割成具有90个切面的钻石,使它仿佛像一团从内向外燃烧的火焰,璀璨夺目。这颗被命名为TiffanyDiamond的钻石,至今只有两位女士幸运佩戴过:蒂凡尼舞会主席怀特·豪斯夫人和奥黛丽·赫本。而赫本后来被人评价为:“唯一可以盖过蒂凡尼珠宝光芒的女人”。蒂凡尼翠蓝常常有女人只要见到男人手上翠蓝色的小盒,就已经开始尖叫。因为TiffanyBlue,这个独特的翠蓝色调,作为蒂凡尼时尚简约设计的标志,早已深入她们的内心。蒂凡尼推崇时尚简约的设计法则,这是它的产品不仅吸引上流社会也被普通顾客青睐的秘诀。1974年,艺术家伯雷蒂开始为蒂凡尼设计珠宝,她从骨头、咖啡豆等天然物品中获得灵感,设计了一款价格不高却精美出众的项链,并以此向仅为富人设计宝石的陈旧观念挑战。印象派大师毕加索的女儿PalomaPicasso,从1980年开始就为该品牌担任设计师,继承自父亲的艺术天赋,她设计的两大系列“X”和“LOVINGHEART”(爱心),均是把最简单的X和心形图案扭曲变化,制造出充满时尚感的首饰。此外,蒂凡尼的纯银饰品打破了以往名牌首饰只能在隆重场合佩戴的惯例,用来陪衬牛仔裤等便装更加率性自然。不仅仅是一件首饰如果追问女人们为什么痴迷于蒂凡尼,答案也许是蒂凡尼已不仅仅是一件首饰那么简单。透过多重的电影图像,蒂凡尼优雅精致的珠宝首饰、淡蓝色装潢的品牌专卖店,早已不单是一个品牌符号,它更像是具有情感象征的图腾,经过岁月的沉淀,于太多女人的心底。于是,我们看到,无数女人与《蒂凡尼的早餐》中的赫本一样在蒂凡尼迷人的橱窗前徘徊;与《西雅图夜未眠》中的梅格·瑞安一起挑选蒂凡尼咖啡瓷具,欣赏她戴上后来又退回的结婚戒指;与《恋爱世代》中的隆松子一起凝视那颗代表爱情不确定性的蒂凡尼水晶苹果……蒂凡尼,一个纽约的、美国的、世界的名字。
总结二元一次方程的解题方法与技巧
代入消元法解二元一次方程组:
(1) 基本思路:未知数又多变少。
(2) 消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3) 代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子
表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这个方法叫做代入消元法,简称代入法。
(4) 代入法解二元一次方程组的一般步骤:
1、 从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如
y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”
2、 将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即
“代”。
3、 解出这个一元一次方程,求出x的值,即“解”。
4、 把求得的x值代入y=ax+b中求出y的值,即“回代” 5、 把x、y的值用{联立起来即“联”。
加减消元法解二元一次方程组
(1) 两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边
分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2) 用加减消元法解二元一次方程组的解
1、 方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那
么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。
2、 把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,
即“加减”。
3、 解这个一元一次方程,求得一个未煮熟的值,即“解”。
4、 将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数
的值即“回代”。
5、 把求得的两个未知数的值用{联立起来,即“联”。