三角形内角和边长的关系 设θ为三角形内最小内角,acos^2(θ/2)+sin^2(θ/2)-cos^2(θ/2)-asin^2(θ/2)=a+1
设θ为三角形内最小内角,acos^2(θ/2)+sin^2(θ/2)-cos^2(θ/2)-asin^2(θ/2)=a+1
设θ为三角形内最小内角,acos^2(θ/2)+sin^2(θ/2)-cos^2(θ/2)-asin^2(θ/2)=a+1
acos^2(θ/2)+sin^2(θ/2)-cos^2(θ/2)-asin^2(θ/2)=a+1
化简后,有
acosθ-cosθ=a+1,
cosθ=(a+1)/(a-1),
θ为三角形内最小内角,则有
0<cosθ<1,
即,0<(a+1)/(a-1)<1,
取不等式的交集得,a<-1.
如果a、b、c满足a^2+2b^2+2c^2-2ab-2bc-6c+9=0,那么(a+bc)^2=?
a^2+2b^2+2c^2-2ab-2bc-6c+9=0
(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-6c+9)=0
(a-b)^2+(b-c)^2+(c-3)^2=0
平方大于等于0
相加等于0则只有都等于0
所以a-b=0,b-c=0,c-3=0
所以a=b=c=3
所以(a+bc)^2=12^2=144
(20如2?福州)______÷6=6:______=如2=(&lbs2;&lbs2;&lbs2;&lbs2;&lbs2;&lbs2
s÷6=6:x我=
x 我=
4 w=50%;
故答案为:s,x我,4,50.
已知M={-3,-2,0,1,2},N={-2,-1,1,2},则M∩N=( )A.{-2,1,2 }B.{-3,-2,-1,0,1,2}C
∵M={-3,-2,0,1,2},N={-2,-1,1,2},
则M∩N={-3,-2,0,1,2}∩{-2,-1,1,2}={-2,1,2}.
故选:A.
计算:(1)-2 2 +2 0 -|-3|×(-3) -1 ;(2)(4x 3 y 2 -2x 4 y 2 -xy)÷(-xy);(3)(3x-2y+1)
解:(1)原式=-2;(2)原式=-8x 2 y+4x 3 y+1;
(3)原式=9x 2 -4y 2 +4y-1;
(4)原式=-24a。
因式分解: (1)a 2 bc-abc (2)16x 2 -9y 2 (3)2x 2 -4xy+2y 2 (4)
(1)原式=abc(a-1);(2)原式=(4x+3y)(4x-3y);(3)原式=2(x 2 -2xy+y 2 )=2(x-y) 2 ;
(4)原式=ab+a+b+1=(a+1)(b+1)
计算:(1)(x-6) 2 .(2)(-2x-y) 2 .(3)(-p+3q) 2 .(4)[(2m+n)(2m-n)] 2
(1)原式=x 2 -2?x?6+6 2=x 2 -12x+36;

(2)原式=(-2x) 2 +2?(-2x)?(-y)+(-y) 2
=4x 2 +4xy+y 2 ;
(3)原式=(-p) 2 +2?(-p)?3q+(3q) 2
=p 2 -6pq+9q 2 ;
(4)原式=[4m 2 -n 2 ] 2
=16m 4 -8m 2 n 2 +n 4 .
(-2)3次方X0.5-(-1.6)2次方/(-2)2次方 -3/2X{(-2/3)2次方-2}
(-2)^3*0.5-(-1.6)^2/(-2)^2-3/2*[(-2/3)^2-2]
=-8*0.5-(-1.6/-2)^2-3/2(4/9-2)
=-4-0.8^2-3/2*(-14/9)
=-4.64+3
=-1.64
分解因式(1)2a2b-4ab2+2ab(2)-2x2+8xy-8y2
(1)2a2b-4ab2+2ab=2ab(a-2b+1);
(2)-2x2+8xy-8y2
=-2(x2-4xy+4y4)
=-2(x-2y)2.
解方程:(1)(x-3)^2=25 (2)(x-2)^2=(2x+3)^2
(x-3)^2=25
x-3=±5
x1=8 x2=-2
(x-2)^2=(2x+3)^2
x-2=2x+3或x-2=-2x-3
x=-5或x=-1/3
5(x-3)^2=125
(x-3)^2=25
x-3=±5
x1=8 x2=-2
x^2+2x-2=0
a=1,b=2,c=-2
△=2^2+4×1×2=12
x=(-2±2√3)/2
x1=(-1+√3)/2
x2=(-1-√3)/2