a2不可能等于2a对吗 已知a=13,求1?2a+a2a?1-a2?a+1a2?a的值

已知a=13,求1?2a+a2a?1-a2?a+1a2?a的值
已知a=13,求1?2a+a2a?1-a2?a+1a2?a的值
原式=
(a?1)2 a?1-
(a?1)2 a(a?1)=a-1-
|a?1| a(a?1)(a=
1 3<1)
=a-1+
=a-1+
1 a=
3 3-1+
3=
4 3 3-1.
证明若a^2+b^2=1,x^2+y^2=1则ax+by<=1
a^2+b^2=1,x^2+y^2=1
令 a = sinA, b = cosA, x = sinB, y = cosB
ax+by = sinA * sin B + cosA * cosB = cos (B-A) <=1
1—3(x一1/2y2)十(—x十1/2y2)=
1—3(x一1/2y2)十(—x十1/2y2)
=1-3x+3/2y2-x+1/2y2
=1-4x+2y2
计算:(1)(1a?1b)÷a?bab(2)(x?2x+2+4xx2?4)÷1x2?4
(1)原式=
b?a ab×
ab a?b=-1;
(2)[
(x?2)2 (x+2)(x?2)+
4x (x+2)(x?2)]×
(x+2)(x?2) 1=(x-2)2+4x
=x2-4x+4+4x
=x2+4.
实数x1,x2满足x1^2-6x1+2=0和x2^2-6x2+2=0,求x2/x1+x1/x2
解:∵x1²-6x1+2=0,x2²-6x2+2=0
∴x1、x2是关于x的方程x²-6x+2=0的两个根
∴由韦达定理,得x1+x2=6,x1x2=2
∴x1²+x2²=(x1+x2)²-2x1x2=36-4=32
∴x2/x1+x1/x2=(x1²+x2²)/(x1x2)=32/2=16.
已知:(1/a+b+1/a-b)/2a/a^2-2ab+b^2,其中a^2-6a+9+|b-1|=0求(1/a+b+1/a-b)/2a/a^2-2ab+b^2=?
a^2-6a+9+|b-1|=0,即
(a-3)^2+|b-1|=0
(a-3)^2≥0,|b-1|≥0
所以a-3=0,b-1=0
a=3、b=1
(1/a+b+1/a-b)/2a/a^2-2ab+b^2=(1/4+1/2)/(6/4)=1/2
通分2a/(2a+1),4(2a-1)/(4a^2-4a+1)
2a/(2a+1)=2a(2a-1)/[(2a-1)(2a+1)]
4(2a-1)/(4a^2-4a+1)=4(2a-1)/(2a-1)²=4/(2a-1)=4(2a+1)/[(2a-1)(2a+1)]
计算: 8 +( 1 2 ) -1 -4cos45°-2÷ 1 2 ×2-(2009- 3
原式= 2 2 +2-4× 2 2-2×2×2 -1(4分)
= 2
+2-2
2-8 -1
=-7.(6分)
计算:(1)a2a?1?a?1(2)(yx2?xy+xy2?xy)÷x?yxy
(1)
a2 a?1?a?1
=
-
(a+1)(a?1) a?1,
=
;
(2)(
y x2?xy+
x y2?xy)÷
x?y xy=[
y x(x?y)+
x y(y?x)]×
xy x?y=[
y2 xy(x?y)-
x2 xy(x?y)]×
xy x?y=
(y?x)(y+x) xy(x?y)×
xy x?y=
y+x y?x.
数列{an}中,a1=1,an=2(S^2)n/2Sn-1(n≥2),求an
an=2(Sn^2)/(2Sn-1)(n≥2)
将an=Sn-S(n-1)代入已知条件an=2Sn^2/(2Sn -1)得
Sn-S(n-1)=2Sn²/(2Sn-1) (n≥2),展开化简得
2Sn²-2Sn*S(n-1)-Sn+S(n-1)=2Sn²
S(n-1)-Sn=2S(n-1)*Sn
两边同除以Sn*S(n-1)得
1/Sn-1/S(n-1)=2 (n≥2)
所以{1/Sn}是公差为2的等差数列,其首项=1/S1=1/a1=1
所以1/Sn=1+2(n-1)=2n-1
Sn=1/(2n-1)
递推得S(n-1)=1/(2n-3)
两式相减得Sn-S(n-1)= 1/(2n-1)-1/(2n-3)=-2/[(2n-1)(2n-3)]
故通项公式an=-2/[(2n-1)(2n-3)] (n≥2)。
综上所述,当n=1时,an=1;当n≥2时,an=-2/[(2n-1)(2n-3)]。
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!