化简 化简:(1)﹣3x 2 y+2x 2 y+3xy 2 ﹣2xy 2 ;(2)3(a 2 ﹣2ab)﹣2(﹣3ab+b 2 );(3)5abc﹣{2a 2
化简:(1)﹣3x 2 y+2x 2 y+3xy 2 ﹣2xy 2 ;(2)3(a 2 ﹣2ab)﹣2(﹣3ab+b 2 );(3)5abc﹣{2a 2
化简:(1)﹣3x 2 y+2x 2 y+3xy 2 ﹣2xy 2 ;(2)3(a 2 ﹣2ab)﹣2(﹣3ab+b 2 );(3)5abc﹣{2a 2
解:(1)原式=(﹣3+2)x 2 y+(3﹣2)xy 2=﹣x 2 y+xy 2 ;
(2)原式=3a 2 ﹣6ab+6ab﹣2b 2
=3a 2 ﹣2b 2 ;
(3)原式=5abc﹣[2a 2 b﹣(3abc﹣4a 2 b+ab 2 )]
=5abc﹣(2a 2 b﹣3abc+4a 2 b﹣ab 2 )
=5abc﹣2a 2 b+3abc﹣4a 2 b+ab 2
=8abc﹣6a 2 b+ab 2 .
化简.(1)(3x-y)-(2x+3y)(2)(3x 2 -xy-2y 2 )-2(x 2 +xy-2y 2 )(3)3x 2 +[x 2 +(3x 2 -2x
(1)原式=3x-y-2x-3y=x-4y;(2)原式=3x 2 -xy-2y 2 -2x 2 -2xy+4y 2 =x 2 -3xy+2y 2 ;(3)原式=3x 2 +(x 2 +3x 2 -2x-2x 2 +6x)=3x 2 +2x 2 +4x=5x 2 +4x.
化简:(1)2(2a-3b)+3(2b-3a)(2)2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)
(1)2(2a-3b)+3(2b-3a)
=4a-6b+6b-9a
=-5a;
(2)2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)]
=2x2-2xy-6x2+9xy-2x2+4x2-2xy+2y2
=(2x2-6x2-2x2+4x2)+(-2xy+9xy-2xy)+2y2
=-2x2+5xy+2y2.
2^(2k+1)-2^-(2k-1)+2^-2k,等于()A.2^-2k B.2^-(2k-1)C.2^-(2k+1)D.2线上等!
2^(2k+1)-2^-(2k-1)+2^-2k等于(A)
A.2^-2k B.2^-(2k-1)C.2^-(2k+1)D.2
设 k=0
原式=2^(2*0+1)-2^-(2*0-1)+2^-(2*0)=2¹-2¹+2º=1
2^(-2k)=2^(-2*0)=2º=1
计算:(x^2+2xy+y^2)/(x^2y+xy^2)-(x^2-2xy+y^2)/(x^2y-xy^2)
:(x^2+2xy+y^2)/(x^2y+xy^2)-(x^2-2xy+y^2)/(x^2y-xy^2)
=(x+y)^2/[xy(x+y)]-(x-y)^2/[xy(x-y)]
=(x+y)/xy-(x-y)/xy
=(x+y-x+y)/xy
=2y/xy
=2/x
计算:(1)(?2)3×(?2)?2?(?32)÷(23)?2+(?2009)0(2)(3x3)2?(-2y2)5÷(-12xy2)2
(1)原式=-8×
1 4+9×

9 4
+1
=-2+
+1
=
;
(2)原式=9x6?(-32y10)÷144x2y4
=-2x4y6.
3a^2-(4a^2b-2ab^2-b^2)-(2ab^2+3a^2-3b^2)+3a^2b
3a^2-(4a^2b-2ab^2-b^2)-(2ab^2+3a^2-3b^2)+3a^2b
=3a^2-4a^2b+2ab^2+b^2-2ab^2-3a^2+3b^2+3a^2b
=4b^2-a^2b
a=-4,b=4
4b^2-a^2b
=4*4^2-(-4)^2*4
=4*16-16*4
=0
Xˇ2=4=2ˇ4,[(X+1/2y)ˇ2+(x-1/2y)ˇ2](2xˇ2-1/2yˇ2)=?
[(x+1/2y)^2+(x-1/2y)^2](2x^2-1/2y^2)
=(x^2+xy+1/4y^2+x^2-xy+1/4y^2)(2x^2-1/2y^2)
=(2x^2+1/2y^2)(2x^2-1/2y^2)
=4x^4-1/4y^4
代入x、y的值计算
因题目表述不清
假设Xˇ2=y=2ˇ4
原式=(4*(2^4)^2-1)/(4*(2^4)^2)
=1023/1024
2*2+2乘2乘3+3*2,(-2)*2+2乘(-2)乘3+3*2,能发现什么规律?
2^2+2×2×3+3^2=(2+3)^2=25
(-2)^2+2×(-2)×3+3^2=(-2+3)^2=1
以上都是a^2+2ab+b^2=(a+b)^2满足完全平方和公式
证明:a2、(a+1)2、(a+2)2、(a+3)2/b2、(b+1)2、(b+2)2、(b+3)2/
按列相减,多减几次就出来了,最后两列都可以化成纯数字。