您现在的位置是:首页 >

k的n次方求和公式 求解c(n)=1*2+2*2+3*2+…+n*2

火烧 2022-11-13 10:01:41 1052
求解c =1*2+2*2+3*2+…+ *2 求解c =1*2+2*2+3*2+…+ *2c =1*2+2*2+3*2+…+ *2c /2=1+2+3+…+ = +1 /2c = +1 计算:(a-2

求解c(n)=1*2+2*2+3*2+…+n*2  

求解c(n)=1*2+2*2+3*2+…+n*2

c(n)=1*2+2*2+3*2+…+n*2
c(n)/2=1+2+3+…+n=(n+1)n/2
c(n)=(n+1)n

计算:(a-2b)(-a-2b)=______; (-a-2a2)2=______

(a-2b)(-a-2b)=(-2b)2-a2=4b2-a2;
(-a-2a2)2=a2-2?(-a)?2a2+(2a2)2=a2+4a3+4a4,
故答案为:4b2-a2,a2+4a3+4a4.

计算: - 2 2 + 12 +| 3 -2|-2sin60°+(-3 ) -2

原式=-4+2

k的n次方求和公式 求解c(n)=1*2+2*2+3*2+…+n*2
3 +2-

3

-2×

3 2

+

1 9

=-

17 9

(10^2+11^2+12^2+13^2+14^2)365=?

由平方和公式n(n+1)(2n+1)/6
分子=(1^2+2^2+...+14^2)-(1^2+2^2+...+9^2)
=(14*15*29-9*10*19)/6
=7*5*29-3*5*19
=5*(7*29-3*19)
=5*(7*19+7*10-3*19)
=5*(4*19+70)
=5*146
=5*2*73
365=5*73
消去后得2

limx--0:(sinx)^2-x^2(cosx)^2x^2(sinx)^2

lim(x→0)[(sinx)^2-x^2(cosx)^2]/[x^2(sinx)^2]
=lim(x→0)[(sinx)^2-x^2(cosx)^2]/x^4 (0/0)
=lim(x→0)[2sinxcosx-2x(cosx)^2+2x^2sinxcosx]/(4x^3)
=lim(x→0)cosx[sinx-xcosx+x^2sinx]/(2x^3)
=lim(x→0)[sinx-xcosx+x^2sinx]/(2x^3) (0/0)
=lim(x→0)[cosx-cosx+xsinx+2xsinx+x^2cosx]/(6x^2)
=lim(x→0)[3xsinx+x^2cosx]/(6x^2)
=lim(x→0)[3sinx+xcosx]/(6x) (0/0)
=lim(x→0)[3cosx+cosx-xsinx]/6
=2/3

计算:[2^(n+4)-2*2^n]/(2*2^(n-3)

原式=[2^(n+4)-2^(n+1)]/2^(n-2)=[2^6*2^(n-2)-2^3*2^(n-2)]/2^(n-2)=2^6-2^3=56

计算:(1) -24×( 1 2 + 2 3 - 5 6 ) ;(2) (-3 ) 2 ÷ 9 2

(1)解法一:原式= -24×

1 2 +(-24)×

2 3

-(-24)×

5 6


=-12-16+20,
=-8.
解法二:原式= -24×

1 3


=-8.
(2)原式= 9×

2 9

+(-1) ,
=2-1,
=1.

2ab^2(a^2+2a^2b+b^3+3a)

2a³b²+4a^(2b+1)b²+2ab^5+6a²b²

(a+2b-c)2=a2+4b2+c2+?

原式=a²+4b²+c²+4ab-2ac-4bc

α+β=2π/3,求证2cos^2(α)-sin^2(β)=cos(2α+π/3)

左边=2[cos^2α-sin^2β]
=2[(1+cos2α)/2-(1-cos2β)/2]
=cos2a+cos2β
=cos2α+(cos(4π/3-2α)
=cos2α+[cos(4π/3)cos2α+sin(4π/3)sin2α]
=cos2α+[-cos2a/2-√3sin2α/2]
=cos2α-cos2α/2-√3sin2α/2
=cos2α/2-√3sin2α/2
右边=cos(2α+π/3)
=cos2αcosπ/3-sin2αsinπ/3.
=cos2α/2-√3sin2α/2
左边等于右边,得证。
说明一下,你要证明的等式应该是:2[cos^2(α)-sin^2(β)]=cos(2α+π/3),掉了一个中括号,对吧?

  
永远跟党走
  • 如果你觉得本站很棒,可以通过扫码支付打赏哦!

    • 微信收款码
    • 支付宝收款码