如图已知ab平行de 已知abc=1,求证:a/(ab+a+1)+b/(bc+a+1)+c/(ca+c+1)=1
已知abc=1,求证:a/(ab+a+1)+b/(bc+a+1)+c/(ca+c+1)=1
已知abc=1,求证:a/(ab+a+1)+b/(bc+a+1)+c/(ca+c+1)=1
解:因为abc=1,所以:
a/(ab+a+1)+b/(bc+b+1)+c/(ca+c+1)
=a/(ab+a+abc)+b/(bc+b+abc)+c/(ca+c+1)
=a/[a(b+1+bc)]+b/[b(c+1+ac)]+c/(ca+c+1)
=1/(b+1+bc)+1/(c+1+ac)+c/(ca+c+1)
=abc/(b+abc+bc)+1/(ac+c+1)+c/(ca+c+1)
=abc/[b(1+ac+c)]+1/(ac+c+1)+c/(ca+c+1)
=ac/(1+ac+c)+1/(ac+c+1)+c/(ca+c+1)
=(ac+1+c)/(1+c+ac)=1
函数y=log1/2 (x+ 1/(x-1)+1) ,(x>1)最大值?
x>1
x+ 1/(x-1)+1=(x-1)+ 1/(x-1)+2≥2+2=4
底数1/2<1,log1/2(U)内单调递减的,所以x+ 1/(x-1)+1取最大值时y取得最小值
当且仅当(x-1)=1/(x-1),得x=2时(x=0不取)
当x=2时,ymax=log1/2(4)=-2
(a+1)(a-1)(a的二次方+1)(a的四次方+1)(a的八次方+1)
(a+1)(a-1)(a^2+1)(a^4+1)(a^8+1)
=(a^2-1)(a^2+1)(a^4+1)(a^8+1)
=(a^4-1)(a^4+1)(a^8+1)
=(a^8-1)(a^8+1)
=a^16-1
如果不懂,请Hi我,祝学习愉快!
(1+x)10=a0+a1(1-x)+a2(1-x)2+…+a10(1-x)10,a8=?
(1+x)^10
=(-1-x)^10
=[-2+(1-x)]^10
a8(1-x)^8是第九项
所以=C10(8)*(-2)^2*(1-x)^8
所以a8=C10(8)*(-2)^2=45*4=180
长度单位: 1 km=_m 1dm=_m 1mm=_m 1um=_m 1nm=_m
1 km=1000_m 1dm=0.1_m 1mm=1*10^-3_m 1um=1*10^-6_m 1nm=1*10^-9_m
2001*2002/1+2002*2003/1+2003*2004/1+2004*2005/1+2005/1=?
1/2001*2002+1/2002*2003+1/2003*2004+1/2004*2005+1/2005
=1/2001-1/2002+1/2002-1/2003+...+1/2004-1/2005+1/2005
=1/2001
数列﹛an﹜满足a1=2,a﹝n+1﹞=an∕〔an+3﹞n≥1,则﹙1/an3﹚+﹙1/a4﹚=?
解:
a(n+1)=an/(an +3)
1/a(n+1)=(an +3)/an=3/an +1
1/a(n+1) +1/2=3/an +3/2=3(1/an +1/2)
[1/a(n+1) +1/2]/(1/an +1/2)=3,为定值。
1/a1 +1/2=1/2+1/2=1,数列{1/an +1/2}是以1为首项,3为公比的等比数列。
1/an +1/2=1×3^(n-1)=3^(n-1)
1/an=3^(n-1) -1/2=[2×3^(n-1) -1]/2
1/a3+1/a4=(2×3²-1)/2+(2×3³-1)/2=(17+53)/2=35
用上面的方法可以求任意1/ap+1/aq,即任意两项之和。
如果x=y,那么x:y等于( ) A.3:1 B.1:3 C.1:1 D.1:
因为x=y,所以x:y=x:x=1:1;故选:C.

已知复数z满足(1+i)z=2i,则z=( )A.1-iB.1+iC.-1-iD.-1-
∵复数z满足(1+i)z=2i,∴(1-i)(1+i)z=(1-i)×2i,化为2z=2(i+1),∴z=1+i.
故选B.
(1-a+1/1)/aa+2a+1/a此方程的解 快点哈 急用!1
[1-1/(a+1)] ÷ a/(a²+2a+1)
= (a+1-1)/(a+1) × (a²+2a+1)/a
= a/(a+1) × (a+1)²/a
= a+1