高三数学题 高中数学题啊~!谁会写?
高中数学题啊~!谁会写?
高中数学题啊~!谁会写?
解:
设圆方程为(x-a)^2+(y-b)^2=r^2
根据题意:
=>(1-a)^2+(0-b)^2=r^2..............①
(3-a)^2+b^2=r^2....................②
a^2+(-1-b)^2=r^2...................③
由..............①、②、③得:
a=2
b=-2
r^2=5
=>(x-2)^2+(y+2)^2=5
高中数学题谁会啊?
1/50
对不?
把那个a和b的关系式汇出来,再把1/ab用a或b表示出来得到一个关于a或b的函式,再求函式值域
我也不知道对不,反正大体思路就这样
高中数学题
b=0,
x²/a²-y²/b²=1
b²x²-a²y²=a²b²
b=0代入:
y²=0,
y=0,
就是x轴。
y²=b²(x²-a²)/a²
y=±(b/a)√(x²-a²)
x²≥a²,x≤-a,或者x≥a。
此时双曲线顶点与焦点重合。双曲线退化为x∈(-∞,-a),(a,+∞)两条射线。

如果直接考虑切线有困难
那么我们这样考虑
假设有个切点(x0,y0)
则,
f'(x0)=1
f'(x0)=1/x0lna=1
所以x0=loga e
又切点满足2个曲线
所以x0=y0
y0=logaX0
所以loga e=loga(loga e)
所以e=loga e
所以a=e^(1/e)
这个数列叫“调和级数”,是发散的,因此没有极限,和>=6,是n=227的时候。
参考计算表:
n = 0
s = 0
A = Table[{i, "--"}, {i, 256}]
While[s < 6, n = n + 1; s = s + 1/n; A[[n]][[2]] = N[s, 6]]
Print[A]
{{1,1.00000},{2,1.50000},{3,1.83333},{4,2.08333},{5,2.28333},{6,2.45000},{7,2.59286},{8,2.71786},{9,2.82897},{10,2.92897},{11,3.01988},{12,3.10321},{13,3.18013},{14,3.25156},{15,3.31823},{16,3.38073},{17,3.43955},{18,3.49511},{19,3.54774},{20,3.59774},{21,3.64536},{22,3.69081},{23,3.73429},{24,3.77596},{25,3.81596},{26,3.85442},{27,3.89146},{28,3.92717},{29,3.96165},{30,3.99499},{31,4.02725},{32,4.05850},{33,4.08880},{34,4.11821},{35,4.14678},{36,4.17456},{37,4.20159},{38,4.22790},{39,4.25354},{40,4.27854},{41,4.30293},{42,4.32674},{43,4.35000},{44,4.37273},{45,4.39495},{46,4.41669},{47,4.43796},{48,4.45880},{49,4.47921},{50,4.49921},{51,4.51881},{52,4.53804},{53,4.55691},{54,4.57543},{55,4.59361},{56,4.61147},{57,4.62901},{58,4.64625},{59,4.66320},{60,4.67987},{61,4.69626},{62,4.71239},{63,4.72827},{64,4.74389},{65,4.75928},{66,4.77443},{67,4.78935},{68,4.80406},{69,4.81855},{70,4.83284},{71,4.84692},{72,4.86081},{73,4.87451},{74,4.88802},{75,4.90136},{76,4.91451},{77,4.92750},{78,4.94032},{79,4.95298},{80,4.96548},{81,4.97782},{82,4.99002},{83,5.00207},{84,5.01397},{85,5.02574},{86,5.03737},{87,5.04886},{88,5.06022},{89,5.07146},{90,5.08257},{91,5.09356},{92,5.10443},{93,5.11518},{94,5.12582},{95,5.13635},{96,5.14676},{97,5.15707},{98,5.16728},{99,5.17738},{100,5.18738},{101,5.19728},{102,5.20708},{103,5.21679},{104,5.22641},{105,5.23593},{106,5.24536},{107,5.25471},{108,5.26397},{109,5.27314},{110,5.28223},{111,5.29124},{112,5.30017},{113,5.30902},{114,5.31779},{115,5.32649},{116,5.33511},{117,5.34366},{118,5.35213},{119,5.36053},{120,5.36887},{121,5.37713},{122,5.38533},{123,5.39346},{124,5.40152},{125,5.40952},{126,5.41746},{127,5.42533},{128,5.43315},{129,5.44090},{130,5.44859},{131,5.45622},{132,5.46380},{133,5.47132},{134,5.47878},{135,5.48619},{136,5.49354},{137,5.50084},{138,5.50809},{139,5.51528},{140,5.52243},{141,5.52952},{142,5.53656},{143,5.54355},{144,5.55050},{145,5.55739},{146,5.56424},{147,5.57105},{148,5.57780},{149,5.58451},{150,5.59118},{151,5.59780},{152,5.60438},{153,5.61092},{154,5.61741},{155,5.62386},{156,5.63027},{157,5.63664},{158,5.64297},{159,5.64926},{160,5.65551},{161,5.66172},{162,5.66790},{163,5.67403},{164,5.68013},{165,5.68619},{166,5.69221},{167,5.69820},{168,5.70415},{169,5.71007},{170,5.71595},{171,5.72180},{172,5.72761},{173,5.73339},{174,5.73914},{175,5.74486},{176,5.75054},{177,5.75619},{178,5.76181},{179,5.76739},{180,5.77295},{181,5.77847},{182,5.78397},{183,5.78943},{184,5.79487},{185,5.80027},{186,5.80565},{187,5.81100},{188,5.81631},{189,5.82161},{190,5.82687},{191,5.83210},{192,5.83731},{193,5.84249},{194,5.84765},{195,5.85278},{196,5.85788},{197,5.86296},{198,5.86801},{199,5.87303},{200,5.87803},{201,5.88301},{202,5.88796},{203,5.89288},{204,5.89778},{205,5.90266},{206,5.90752},{207,5.91235},{208,5.91716},{209,5.92194},{210,5.92670},{211,5.93144},{212,5.93616},{213,5.94085},{214,5.94553},{215,5.95018},{216,5.95481},{217,5.95942},{218,5.96400},{219,5.96857},{220,5.97311},{221,5.97764},{222,5.98214},{223,5.98663},{224,5.99109},{225,5.99554},{226,5.99996},{227,6.00437},{228,--},{229,--},{230,--},{231,--},{232,--},{233,--},{234,--},{235,--},{236,--},{237,--},{238,--},{239,--},{240,--},{241,--},{242,--},{243,--},{244,--},{245,--},{246,--},{247,--},{248,--},{249,--},{250,--},{251,--},{252,--},{253,--},{254,--},{255,--},{256,--}}
我个人感觉《黄冈题典》很不错,我高中就是用这本书自己做了很多题,上面有很多对答案的解析,会告诉你做题的思路和方法以及相关的数学思想,你可以去书店看看。我当时买的是中国计量出版社的,这本书真的很不错
3的2n+2次幂-8n-9
3的2n+2次幂=9的n+1次幂=9*9的n次幂=9(8+1)的n次幂
3的2n+2次幂-8n-9 = 9*(8+1)的n次幂-8n-9
把9*(8+1)的n次幂按二项式定理展开
最后可得9(Cn0)*8^n+9(Cn1)*8^(n-1)+.....+9Cn(n-1)*8+9Cnn-8n-9
=9(Cn0)*8^n+9(Cn1)*8^(n-1)+.....+72n+9-8n-9
=9(Cn0)*8^n+9(Cn1)*8^(n-1)+.....+64n
每项可提出8^2,提出8^2后剩余的是整数。
所以能被整除
sin^6x+cos^6x=(sin^2x+cos^2x)(sin^4x-sin^2xcos^2x+cos^4x)
=sin^4x-sin^2xcos^2x+cos^4x
=(sin^2x+cos^2x)^2-3sin^2xcos^2x
=1-3sin^2xcos^2x
所以分子=3sin^2xcos^2x
sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sin^2xcos^2x
=1-2sin^2xcos^2x
所以分母=2sin^2xcos^2x
所以原式=3/2
【分析】
结合已知条件,检验函式的定义域关于原点对称,检验f(-x)=(-x)²+1=f(x),进而可证明f(x)是偶函式,利用函式的单调性的定义,只要证明当任意x1<x2∈[0,+∞)都有f(x1)<f(x2)证明函式的单调性
【解答】
证明:
(1)
∵f(x)的定义域为R,
∴它的定义域关于原点对称,f(-x)=(-x)²+1=f(x)
所以f(x)是偶函式
(2)
任取x1,x2且x1<x2,x1与x2∈[0,+∞)
则:
f(x1)-f(x2)
=x1²+1-(x2²+1)
=x1²-x2²
=(x1-x2)(x1+x2)<0
∴f(x1)<f(x2)
∴f(x)在[0,+∞)上是增加的。