您现在的位置是:首页 >

C1照可以升级为B1 %C3%F1%B9%FA%CA%B1%C6%DA%BE%AF%B2%EC%BA%CD%BA%DA%B0%EF%B5%E7%D3%B0

火烧 2022-08-16 09:19:52 3927
%C3%F1%B9%FA%CA%B1%C6%DA%BE%AF%B2%EC%BA%CD%BA%DA%B0%EF%B5%E7%D3%B0 %C3%F1%B9%FA%CA%B1%C6%DA%BE%AF%B2

%C3%F1%B9%FA%CA%B1%C6%DA%BE%AF%B2%EC%BA%CD%BA%DA%B0%EF%B5%E7%D3%B0  

%C3%F1%B9%FA%CA%B1%C6%DA%BE%AF%B2%EC%BA%CD%BA%DA%B0%EF%B5%E7%D3%B0

%D4%DA%D5%FD%B3%A3%C7%E9%BF%F6%CF%C2%B7%A8%B9%FA%B5%C4%BA%CB%C7%B1%CD%A7%BF%C9%D2%D4%CD%A8%B9%FD%C9%F9%C4%C5%D7%B0%D6%C3%CC%BD%B2%E2%B5%BD%D3%EB%BC%BA%B7%BD%CF%E0%BD%FC%B5%C4%C6%E4%CB%FB%BD%A2%D6%BB%A3%AC%B5%AB%D2%B2%D0%ED%CA%C7%CB%AB%B7%BD%C7%B1%CD%A7%C9%CF%B5%C4%B7%B4%C9%F9%C4%C5%BC%BC%CA%F5%CC%AB%B9%FD%B8%DF%B6%CB%A3%AC%D2%D4%D6%C1%D3%DA%B8%F7%D7%D4%C9%F9%C4%C5%D7%B0%D6%C3%BE%F9%CE%B4%C4%DC%CC%BD%B2%E2%B5%BD%B6%D4%B7%BD%A1%A3%B5%B1%CA%B1%A1%B0%BF%AD%D0%FD%A1%B1%BA%C5%BA%CB%C7%B1%CD%A7%C9%CF%B5%C4%CB%AE%B1%F8%CC%FD%B5%BD%C1%CB%A1%B0%C5%E9%A1%B1%B5%C4%D2%BB%C9%F9%BE%DE%CF%EC%A3%AC%C7%B1%CD%A7%B5%C4%C9%F9%C4%C5%CD%E2%BF%C7%BC%B8%BA%F5%B1%BB%D7%B2%C0%C3%A1%A3%B8%C3%CF%FB%CF%A2%C8%CB%CA%BF%BB%B9%B1%ED%CA%BE%A3%AC%B1%A3%CA%D8%B9%C0%BC%C6%D3%A2%B7%A8%C1%BD%CB%D2%BA%CB%C7%B1%CD%A7%B5%C4%CF%E0%D7%B2%D2%E2%CD%E2%A3%AC%D0%DE%C0%ED%B7%D1%D3%C3%BD%AB%B8%DF%B4%EF5000%CD%F2%D3%A2%B0%F7%A3%AC%BD%AB%D3%C9%C1%BD%B9%FA%B5%C4%C4%C9%CB%B0%C8%CB%C2%F2%B5%A5%A1%A3%B8%FC%B6%E0%B5%C4%C8%CB%B6%D4%C5%F6%D7%B2%BF%C9%C4%DC%B2%FA%C9%FA%B5%C4%D4%D6%C4%D1%D0%D4%BA%F3%B9%FB%B8%D0%B5%BD%B5%A3%D3%C7%A1%A3%A1%B0%BA%CB%B2%C3%BE%FC%D4%CB%B6%AF%A1%B1%B5%C4%D6%F7%CF%AF%BF%AD%CC%D8-%

已知设a、b、c为满足a+b+c=1的正数,则b/a(b+c)+c/b(a+c)+a/c(a+b)≥9/2

这题可用排序不等式解决:由于该式完全对称,
不妨设a<=b<=c
则a+b<=a+c<=b+c
那么1/(b+c)<=1/(a+c)<=1/(a+b)
因为:[a/(b+c)]+[b/(a+c)]+[c/(a+b)]是顺序和
[b/(b+c)]+[c/(a+c)]+[a/(a+b)]是乱序和
所以:[a/(b+c)]+[b/(a+c)]+[c/(a+b)]>=[b/(b+c)]+[c/(a+c)]+[a/(a+b)]
而[c/(b+c)]+[a/(a+c)]+[b/(a+b)]也是是乱序和
所以:[a/(b+c)]+[b/(a+c)]+[c/(a+b)]>=[c/(b+c)]+[a/(a+c)]+[b/(a+b)]
于是我们得到两个不等式:
[a/(b+c)]+[b/(a+c)]+[c/(a+b)]>=[b/(b+c)]+[c/(a+c)]+[a/(a+b)]
[a/(b+c)]+[b/(a+c)]+[c/(a+b)]>=[c/(b+c)]+[a/(a+c)]+[b/(a+b)]
以上两式相加得:2([a/(b+c)]+[b/(a+c)]+[c/(a+b)])>=3
所以整理可得:[a/(b+c)]+[b/(a+c)]+[c/(a+b)]>=3/2
证毕

初二数学奥赛题:为什么b-c/(a-b)(a-c) + a-c/(b-a)(b-c) + a-b/(c-a)(c-b) = 0

题错了吧?
两边同乘(a-b)(b-c)(a-c) a不等于b,b不等于c
(b-c)^2-(a-c)^2+(a-b)^2=(2b^2-2bc+2ca-2ab)=(2b(b-c)-2a(b-c))=2(b-a)(b-c)
咋可能等于0?

已知向量a=(1.2) 向量b=(x.1) ①(2a+b)⊥(a-2b)②(2a+b)∥(a-2b)③a于b的夹角是60° 求x的值

2a+b=(2+x,5) ,a-2b=(1-2x,0)
①(2a+b)⊥(a-2b)=〉((2a+b).(a-2b)=(2+x)(1-2x)=0=>x=-2或1/2

②(2a+b)∥(a-2b)=〉(1-2x)/(2+x)=0=>x=1/2
)③a与b的夹角是60°=〉a.b=lallblcos60°=>x+2=[√5(1+x²)]/2=>x=4±3√3

定义一种新运算“*”当a≥b时,a*b=a2+b2,当a<b时,a*b=a2-b2,求方程x*2=12的解。

若x>2, 则x*2 = x² + 2² = 12 ,解得 x² = 8 ,x = 2根号2
若x<2 则原式 = x² - 2² = 12 ,解得 x = 4 > 2,与条件x<2矛盾,故舍去
综上 解是 2根号下2
这类题是比较简单的,只要把要求的式子往所谓新定义的运算的式子上靠拢就行了

先化简,再求值:(1+b+b21?b)÷1+b1?b,其中b是方程x2+2x-3=0的解

原式=

1?b2+b2 1?b

?

1?b 1+b

=

1 1+b


∵方程x2+2x-3=0的解为x=3或x=-1,
∴b=3或b=-1(没有意义,舍去),
则当b=3时,原式=

1 4

C1照可以升级为B1 %C3%F1%B9%FA%CA%B1%C6%DA%BE%AF%B2%EC%BA%CD%BA%DA%B0%EF%B5%E7%D3%B0

当(a+2b)/(2a-3b)=2时求代数式(4b+2a)/(9b-6a)-(4a-6b)/(3a+6b)的值

(4b+2a)/(9b-6a)-(4a-6b)/(3a+6b)
=2(a+2b)/[-3(2a-3b)]-2(2a-3b)/3(a+2b)
=-2/3 ×[(a+2b)/(2a-3b)] -2/3 [(2a-3b)/(a+2b)]
=-2/3×2 -2/3×1/2
=-5/3

已知7A-8B=3 A+B=1 利用因式分解求(3A-4B)(7A-8B)+(2A-5B)(8B-7A)的值

(3A-4B)(7A-8B)+(2A-5B)(8B-7A)
=(3A-4B)(7A-8B)-(2A-5B)(7A-8B)
=(7A-8B)(3A-4B-2A+5B)
=(7A-8B)(A+B)
=3*1
=3

如果m(3a-2b)+n(4a+b)=2a-5b 求m与n的值 3a.-2b.4a.b.2a.-5b是向量

将带有a项的 带有b项的提出来即=a(3m+4n-2)-b(2m-n-5)=0
所以 3m+4n=2
2m-n=5 所以m=11,n=17
楼上的请你把那两个值带入原式看看能不能等于等号右边的,我看不等于,你做错了

定义|A∩B|为集合A∩B中元素的个数,若A={a|1≤a≤2000,a=4k+1,k∈Z},B={b|1≤b≤3000,b=3k-1,k∈Z}.求|A

A={a|1≤a≤2000,a=4k+1,k∈Z}
={1,5,9,13,17,21,25,29,...}
B={b|1≤b≤3000,b=3k-1,k∈Z}
={2,5,8,11,14,17,20,23,...}
A∩B={5,17,29,...}
3,4的最小公倍数是12
所以A∩B的元素差值都是12的倍数
故A∩B={5,17,29,...,1997}
共有167个
所以|A∩B|=167

  
永远跟党走
  • 如果你觉得本站很棒,可以通过扫码支付打赏哦!

    • 微信收款码
    • 支付宝收款码