2016×3 1+1/2×1/3+1/3×1/4+…+1/2016*1/2017=?口算
1+1/2×1/3+1/3×1/4+…+1/2016*1/2017=?口算
1+1/2×1/3+1/3×1/4+…+1/2016*1/2017=?口算
1+1/2×1/3+1/3×1/4+…+1/2016*1/2017
=1+1/2-1/3+1/3-1/4+1/4-1/5+……+1/2016-1/2017
=1+1/2-1/2017
=4034/4034+2017/4034-2/4034
=6049/4034

1+1/2+1/3+1/4+……1/2017=?
1*1/2+1/2*1/3+1/3*1/4……+1/2017*1/2018
=1-1/2+1/2-1/3+1/3-1/4+……+1/2017-1/2018
=1-1/2018
=2017/2018
(1+1/2+1/3+1/4+……+1/99)(1/2+1/3+1/4+……+1/100)补充那
1/2*=1-1/2
1/2*1/3=1/2-1/3
1/3*1/4=1/3-1/4
.......
1/99*1/100=1/99-1/100
所以
1/2*1+1/2*1/3+1/3*1/4+...+1/99*1/100
=1-1/2+1/2-1/3+1/3-1/4+。。。。。+1/99-1/100
=1-1/100
=99/100
从第二项开始,恰好负2分之1+2分之1=0,只余下第一项和最后一项负的100分之1,所以1减去100分之1=100分之99
1/2*1+1/2*3+1/3*4+。。。+1/2009*2010
=(1 -1/2 ) +(1/2 -1/3) +(1/3 -1/4)+....+(1/2009 - 1/2010)
=1- 1/2 +1/2 - 1/3- 1/3 +....+1/2009 - 1/2010
=1- 1/2010
=2009/2010
(1) 1又1/2*1又1/3*1又1/4*1又1/5*…*1又1/110 (2) (1/2+1/3+1/4+…1/2004)*(1+1/2+1/3+…...
(1)把几又几分之几化成假分数,就变成:3/2*4/3*5/4*6/5*...*111/110=111/2
(2)第一个括号里先+1再-1,也就是变成(1+1/2+1/3+1/4+...+1/2004-1)
式子就变成【(1+1/2+1/3+1/4+...+1/2004)-1】*(1+1/2+1/3+...+1/2003)-(1+1/2+1/3+...+1/2004)*(1/2+1/3+1/4+...+1/2003)
把前两个乘积按分配律展开,就变成:(1+1/2+1/3+1/4+...+1/2004)*(1+1/2+1/3+...+1/2003)-1×(1+1/2+1/3+...+1/2003)-(1+1/2+1/3+...+1/2004)*(1/2+1/3+1/4+...+1/2003)
=(1+1/2+1/3+1/4+...+1/2004)*(1+1/2+1/3+...+1/2003)-(1+1/2+1/3+...+1/2004)(1/2+1/3+1/4+...+1/2003)-1×(1+1/2+1/3+...+1/2003)
=(1+1/2+1/3+1/4+...+1/2004)【(1+1/2+1/3+...+1/2003)-(1/2+1/3+1/4+...+1/2003)】-1×(1+1/2+1/3+...+1/2003)
=(1+1/2+1/3+1/4+...+1/2004)-(1+1/2+1/3+...+1/2003)
=1/2004
第二题,简便方法:
设1加二分之一加到2003分之1为X。
设二分之一加到2003分之1为Y。
则原式等=X(Y+1/2004)-Y(X+1/2004)
最后打开=1/2004(X-Y)
最后结果=1/2004
1/2*1/3+1/3*1/4+……+1/1999*1/2000
∵1/(1×2)=1/1-1/2
1/(2×3)=1/2-1/3
1/(3×4)=1/3-1/4
......
∴1/(1×2)+1/(2×3)+1/(3×4)+...+1/(1999×2000)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/1999-1/2000)
=1-1/2000
=1999/2000
这需要做题多,以前做过这类题目,自然就想到了。这个题目是这类题目中最基本的一个,还可以类推到1/(1×3)=(1/1-1/3)/2,1/(3×5)=(1/3-1/5)/2……
1/(1×4)=(1/1-1/4)/3,1/(4×7)=(1/4-1/7)/3……
谢谢,望采纳。不懂可追问
求和:1/2*1+1/2*3+1/3*4+…1/2009*2010
1/2*1+1/2*3+1/3*4+…1/2009*2010
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2009-1/2010)
=1-1/2010
=2009/2010
1/1×1/2+1/2×1/3+1/3×1/4+…+1/29×1/30
=1+(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/29-1/30)
=1+1-1/30
=59/30
希望对你有所帮助
1/(n+1)*(1+1/3+1/5+…+1/2n-1)>=(1/n)*(1/2+1/4+…1/2n)
证明:
当k=1时
1/2+1/3+1/4=13/12=26/24>25/24
结论成立。
假设k=n时结论成立,即
1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)>25/24
当k=n+1时
由于
9(n+1)^2=9n^2+18n+9>9n^2+18n+8=(3n+2)(3n+4)
即
9(n+1)^2/[(3n+2)(3n+4)]-1>0
左侧为
1/[(n+1)+1]+1/[(n+1)+2]+1/[(n+1)+3]+...+1/[3(n+1)+1]
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+{1/(3n+2)+1/(3n+3)+1/(3n+4)-1/(n+1)}
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+{6(n+1)/[(3n+2)(3n+4)]-2/(3n+3)}
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+2/(3n+3)*{9(n+1)^2/[(3n+2)(3n+4)]-1}
>1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)>25/24。
结论成立。