limn趋于无穷n√n limn→∞2n+3n2n+1+3n+1=______

limn→∞2n+3n2n+1+3n+1=______
limn→∞2n+3n2n+1+3n+1=______
lim n→∞ 2n+3n 2n+1+3n+1 = lim n→∞ ( 2 3)n+1
2?( 2 3)n+3
=
1 3,
故答案为:
.
1*2+2*3+3*4+.(k-1)*k=?
先研究通项公式:
(k-1)*k=k^2-k=1/3[(k-1)k(k+1)-(k-2)(k-1)k]
k从2开始
Sk=1/3{(1*2*3-0*1*2)+(2*3*4-1*2*3)+(3*4*5-2*3*4)+...+[(k-1)k(k+1)-(k-2)(k-1)k]}
=1/3(k-1)k(k+1)
还有设3阶矩阵A的特值为λ1=1λ2=0λ3=-1 p1^T=(1 2 2 ) p2^T=(2 -2 1) p3^T=(-2 -1 2) 球A 还有 上面那个
令P=(p1,p2,p3)=
1 2 -2
2 -2 -1
2 1 2
则P可逆, 且P^-1AP=diag(1,2,-1)
所以 A=Pdiag(1,2,-1)P^-1 =
5/9 -8/9 10/9
-8/9 11/9 2/9
10/9 2/9 2/9
a1=(1,-1,2,4),a2=(0,3,1,2),a3=(3,0,7,14),a4=(1,-1,2,0),a5=(2,1,5,6) 这组向量的秩是?
由向量组构成矩阵, 用初等行变换化为梯矩阵, 非零行数即向量组的秩
解: (a1^T,a2^T,a3^T,a4^T,a5^T) =
1 0 3 1 2
-1 3 0 -1 1
2 1 7 2 5
4 2 14 0 6
r2+r1,r3-2r1,r4-4r1
1 0 3 1 2
0 3 3 0 3
0 1 1 0 1
0 2 2 -4 -2
r2-3r3,r4-2r3
1 0 3 1 2
0 0 0 0 0
0 1 1 0 1
0 0 0 -4 -4
所以向量组的秩为3.
已知m^2-2m-1=0 则3m^3-(2m+1)^2-3(m-1)=?
m^2-2m-1=0 则m^2-2m=1
3m^3-(2m+1)^2-3(m-1)
=3m^3-(4m^2+4m+1)-3(m-1)
=3m^3-4m^2-4m-1-3m+3
=3m^3-4m^2-4m-3m-1+3
=3m^3-4m^2-7m+2
=3m^3-6m^2+2m^2-7m+2
=3m(m^2-2m)+2m^2-7m+2
=3m+2m^2-7m+2
=2m^2-4m+2
=2(m^2-2m)+2
=2+2
=4
2(3x-1)+3(2x+1)=12
2(3x-1)+3(2x+1)=12
解:6x-2+6x+3=12
12x+1=12
12x=12-1
x=11/12
计算:|3?8|+(π?3)0+(1?2)2?(13)?1
|
3 ?8|+(π?3)0+
(1? 2)2
?(
1 3)?1
=2+1+
-1-3
=
-1.
(2√3-1)的平方÷(1-2√3)+√12
解(2√3-1)的平方÷(1-2√3)+√12
=(1-2√3)的平方÷(1-2√3)+√12
=(1-2√3)+√12
=(1-2√3)+2√3
=1
计算 (2?3)?1?(12+1)+(3+2)0
原式=
1 2? 3-2
3-1+1=2+
3-2
3=2?
3.