已知函数fx是定义在r上的偶函数 已知偶函数f(x)是R上的偶函数,且在[0,+∞)上递增,则f(-2),f(-派),f(3)的大小顺序是?要过程。
已知偶函数f(x)是R上的偶函数,且在[0,+∞)上递增,则f(-2),f(-派),f(3)的大小顺序是?要过程。
已知偶函数f(x)是R上的偶函数,且在[0,+∞)上递增,则f(-2),f(-派),f(3)的大小顺序是?要过程。
f(x)是偶函数
f(-2)=f(2)
f(-π)=f(π)
f(-3)=f(3)
f(x)在[0,+∞)上递增
f(2)<f(3)<f(π)
所以f(-2)<f(-3)<f(-π)
设函数f(x)是R上的偶函数,且在(-∞,0]上单调递增,则f(-派),f(5),f(2)的大小顺序?要过程。
解:
f(x)是R上的偶函数,且在(-∞,0]上单调递增
于是知道f(x)在[0,﹢∞)上递减,于是有f(2)<f(π)<f(5)
又f(-π)=f(π)
所以f(2)<f(-π)<f(5)
设f(x)是R上的偶函数,并且在「0,+∞」上单调递增,则f(-5)、f(-3)、f(4)的大小顺序是
偶函数的话,f(-5)=f(5),f(-3)=f(3)
在「0,+∞」上单调递增,那么f(3)<f(4)<f(5)
所以f(-3)<f(4)<f(-5)

已知f(x)=x^2+ax+b 且f(x+2)是偶函数 则f(1),f(2.5),f(3.5)大小顺序是?要求过程!
F(x+2)=F(-x+2)
(X+2)^2+A(X+2)+B=(2-X)^2+A(2-X)+B
4X+AX+=-4X-AX
4+A=-4-A
A=-4
F(1)=1-4+B=B-3
F(2.5)=6.25-10+B=B-3.75
F(3.5)=12.25-14+B=B-1.75
F(3.5)>F(1)>F(2.5)
希望能帮到你 O(∩_∩)O~
设f(x)是R上的偶函数,并且在(负无穷,0】上单调递减,则f(-5), f(0), f(4)的大小顺序是
解:f(x)是R上的偶函数,并且在(-∞,0]上单调递减,
在[0,+∞)上单调递增,f(-5)=f(5),
故有f(0)<f(4)<f(5),
所以f(0)<f(4)<f(-5)
定义在R上的偶函数f(x)当x€[0,正无穷大)时是减函数。则f(3) f(-2) f(1)的大小顺序
当x为正数时递减则
f(3)<f(2)<f(1)
因为是偶函数,所以f(-x)=f(x),所以函数关于y轴对称,而f(-2)=f(2)
所以f(3)<f(-2)<f(1)
设f(x)为定义在R上的偶数,且f(x)在[0,正无穷)为增函数,则f(-2),f(-π),f(3)的大小顺序是
f(x)为定义在R上的偶数
∴f(-2)=f(2)
f(-π)=f(π)
∵f(x)在[0,正无穷)为增函数
∵2<3<π
<∴f(-2)<f(3)<f(-π)
若y=f(x)是偶函数,且在[0.+00)上为增函数,试比较f(-3),f(-2),f(1)的大小
f(-3)=f(3)>f(2)>f(1)
已知f(x)是偶函数,且f(-2)+f(1)=-8,则f(2)+f(-1)=?要过程。
解:因为f(x)是偶函数 所以有:f(x)=f(-x)
由题有:f(2)+f(-1)=f(-2)+f(1)=-8
已知f(x),g(x)是R上的奇函数和偶函数且f(x)-g(x)=3的x次方,则f(2),f(3),g(0)的大小关系
f(x)-g(x)=3^x
-x代入:-f(x)-g(x)=3^(-x)
两式相减得:f(x)=[3^x-3^(-x)]/2
两式相加得:g(x)=-[3^x+3^(-x)]/2
f(2)=(9-1/9)/2=40/9
f(3)=(27-1/27)/2=144/27
g(0)=-1
g(0)<f(2)<f(3)