tanα与cos2α的关系 已知sin^2α/sin^2β+cos^2αcos^2γ=1,求证:tan^2α/tan^2β=sin^2γ,非常感谢!
已知sin^2α/sin^2β+cos^2αcos^2γ=1,求证:tan^2α/tan^2β=sin^2γ,非常感谢!
已知sin^2α/sin^2β+cos^2αcos^2γ=1,求证:tan^2α/tan^2β=sin^2γ,非常感谢!
证明:sin^2α/sin^2β+cos^2αcos^2γ=1,
变形:sin^2α/sin^2β+cos^2α[1-sin^2γ]=1,
即: sin^2α/sin^2β+cos^2α-cos^2αsin^2γ=1,
解出:cos^2αsin^2γ=sin^2α/sin^2β+cos^2α-1,
整理:cos^2αsin^2γ=sin^2α/sin^2β-sin^2α.
再整理:cos^2αsin^2γ=sin^2α[1/sin^2β-1].
再变形:cos^2αsin^2γ=sin^2α[(1-sin^2β)/sin^2β].
即:cos^2αsin^2γ=sin^2α[(cos^2β)/sin^2β]
即:cos^2αsin^2γ=sin^2α[cot^2β)]
两端除以:cos^2α,
得:sin^2γ=tan^2α[cot^2β]
即:sin^2γ=(tan^2α)/tan^2β
或:(tan^2α)/tan^2β=sin^2γ
证明毕.
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2 中的^是什么意思
就是平方
cos(2α)=(cosα)²-(sinα)²=2(cosα)²-1=1-2(sinα)²
解方程:(1)(x+1) 2 -144=0(2)3(x-2) 2 =x(x-2)(3) 1 2 x 2 - 1 3 x
(1)∵(x+1) 2 -144=0,∴(x+1) 2 =144,
∴x+1=±12,
解得:x 1 =11,x 2 =-13;(2)∵3(x-2) 2 =x(x-2),
∴(x-2)(3x-6-x)=0,
∴(x-2)(2x-6)=0,
即x-2=0或2x-6=0,
解得:x 1 =2,x 2 =3;

(3)∵
1 2x 2 -
1 3x-
1 6=0 ,
∴3x 2 -2x-1=0,
∴(3x+1)(x-1)=0,
即3x+1=0或x-1=0,
解得:x 1 =-
,x 2 =1;
(4)∵(x+2) 2 -10(x+2)+24=0,
∴(x+2-4)(x+2-6)=0,
即(x-2)(x-4)=0,
即x-2=0或x-4=0,
解得:x 1 =2,x 2 =4.
下列各式中,正确的是 [ ] A.(﹣2) 2 >(﹣3) 2 B.﹣2 2 >﹣3 2 C.(﹣2) 3 <﹣
B已知A=x2-2x+1,B=2x2-6x+3.求:(1)A+2B.(2)2A-B
(1)由题意得:A+2B=x2-2x+1+2(2x2-6x+3),
=x2-2x+1+4x2-12x+6,
=5x2-14x+7.
(2)2A-B=2(x2-2x+1)-(2x2-6x+3),
=2x2-4x+2-2x2+6x-3,
=2x-1.
已知A=a^2+b^2-c^2.B=-4a^2+2b^2+3c^2,且A+B+C=0.
A+B+C=0. =》 C =-(A+B)=-(a^2+b^2-c^2 -4a^2+2b^2+3c^2) =3a^2 - 3b^2 -2c^2
2A+B+2C = A+B+C + A + C = 0 + (-B) = -B = =4a^2-2b^2-3c^2
a^2b+b^2a/a^2减B^2/【1-[2ab/a^2+b^2]】 分解因式
a²b+b²a/a^2减b²/【1-[2ab/a²+b²]】
=ab(a+b)/(a-b)(a+b)/[(a²+b²-2ab)/(a²+b²)]
=ab/(a-b)/[(a-b)²/(a²+b²)
=ab(a²+b²)/(a-b)³
计算:(1)x2x?1-x-1;(2)[(a+1)(a?2)a2?4a+4-aa2?2a]÷aa?2
(1)原式=
x2?(x+1)(x?1) x?1=
x2?(x2?1) x?1=
1 x?1;
(2)原式=[
-
a a(a?2)]÷
a a?2=(
a+1 a?2-
1 a?2)÷
a a?2=
a+1?1 a?2×
a?2 a=1.
己知:〔(2x^2+3y^2)^2]^3*(2x^2+3y^2)^4=0.求x.y的值
楼主,您的问题可能有误,请查正。因为本题解得结果为x、y=0。
解::[(2x^2+3y^2)^2]^3÷(2x^2+3y^2)^4
=(2x^2+3y^2)^6÷(2x^2+3y^2)^4
=(2x^2+3y^2)^2=0
由此只能得出:2x^2+3y^2=0,而2x^2+3y^2在原题中是作为除数的,所以本题无解。
当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].
p-[q-2p-(p-q)]
=p-[q-2p-p+q]
=p-[2q-3p]
=4p-2q
=2a2+12ab+6b2