数学奇才华罗庚读后感 急求10篇关于数学家的故事或数学发展史的读后感大约400字左右
急求10篇关于数学家的故事或数学发展史的读后感大约400字左右
急求10篇关于数学家的故事或数学发展史的读后感大约400字左右
我最敬佩数学家是华罗庚。他聪明、好学、勤奋、爱国,是我国杰出的数学家。
华罗庚很聪明、好学。1910年11月12日,华罗庚生于江苏省金坛县。他家境贫穷,决心努力学习。上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?”大家正在思考时,华罗庚站起来说:“23。”他的回答使老师惊喜不已,并得到老师的表扬。从此,他喜欢上了数学。
华罗庚很勤奋。他上完初中一年级后,因家境贫困而失学了,只好替父母站柜台,但他仍然坚持自学数学。经过自己不懈的努力,他的《苏家驹之代数的五次方程式解法不能成立的理由》论文,被清华大学数学系主任熊庆来教授发现,邀请他来清华大学;华罗庚被聘为大学教师,这在清华大学的历史上是破天荒的事情。
华罗庚很爱国。 1936年夏天,已经是杰出数学家的华罗庚,作为访问学者在英国剑桥大学工作两年。而此时抗日的消息传遍英国,他怀着强烈的爱国热忱,风尘仆仆地回到祖国,为西南联合大学讲课。
我一定要好好学习。像华罗庚那样,成为一个伟大的数学家;像华罗庚那样,为国争光。
急求:10篇有关数学的故事或数学的趣闻轶事或数学家的传记。100字的读后感
1 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
2 20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
3 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
4 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
5 俄国诗人莱蒙托夫也是一个数学爱好者。在服兵役时,他出题给军官做一个数学游戏:
他让一个军官先想好一个数,不要告诉别人,然后在这个数上加25,心算好了以后,再加上125,然后再减去37。把算好的结果减去原来想的那个数,结果再乘5并除以2,最后,莱蒙托夫对那个军官说:答案是282.5。
有关一些数学家的故事(大约200字左右)
3.华罗庚
出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师.
少年时期的华罗庚就特别爱好数学,但数学成绩并不突出.19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来.从此在熊庆来先生的引导下,走上了研究数学的道路.晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生! 华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物.下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏: 有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色.
3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子
聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“ 为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题.因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽.但他踌躇了一会,可见我戴的是白帽.
这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了.假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子. 看到这里。同学们可能会拍手称妙吧.后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解.他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃.
现代著名数学家 陈景润
有一次上数学课, 老师讲了一个故事: 200 年前, 有一位名叫哥德巴赫的德国数学家提出了一个猜想: 凡是大于2 的偶数一定可以表示为两个素数之和.比如4=2 2, 6=3 3, 8=3 5, ......哥氏本人虽然对许多偶数进行了验证, 都说明是确实的, 但他本人却无法进行逻辑证明.他写信向著名的数学大师欧拉请教, 欧拉花了多年的精力, 到死也没有证明出来.从此这道世界难题就吸引了成千上万的数学家, 但始终没有人能攻下来, 因此, 它被称为数学皇冠上的明珠.自从听了这个故事后, 哥德巴赫猜想就时常萦绕在陈景润的脑海中.他常想: 那颗明珠究竟会落到什么人之手?中国人, 还是欧洲人?应该是中国人拿下这道难题.他暗暗下了决心, 从此更加发愤学习数学, 有时简直到了如痴如迷的程度.
10篇有关数学的故事,数学的趣文轶事,或数学家的传记等,并写简短的读后感100字左右
您可以先“今天,我读了关于谁。。。。。他的故事让我。。。
华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理
记者在一次采访时问他:“你最大的愿望是什么?”
他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言
他这种为科学,为世界辛劳,锲而不舍的精神值得我们学习。”
用上面的开头写陈景润攻克“哥德巴赫猜想”的事 结尾再写锲而不舍的精神让我。。。。
剩下的故事用 高斯的小学数学老师认为在这样的小山村里不可能会有什么天才,因而对于教育并不上心,一天上课,他给学生们布置下了一道计算题,从1加到100,他认为大家肯定会用很长时间去做,这样自己就可以~~~
物理学家卢瑟福的事 牛顿发现地球引力 阿基米德被杀死的事 欧拉放羊 剩下两个偶也没找到。。楼主有找到也告诉我一下
有关数学发展史的故事
毕达哥拉斯 (Pythagqras,约公元前885年至公元前400年间),从小就很聪明,一次他背着柴禾从街上走过,一位长者见他捆柴的方法与别人不同,便说:“这孩子有数学奇才,将来会成为一个大学者。”他闻听此言,便摔掉柴禾南渡地中海到泰勒斯门下去求学。毕达哥拉斯本来就极聪明,经泰勒一指点,许多数学难题在他的手下便迎刃而解。其中,他证明了三角形的内角和等于180度;能算出你若要用瓷砖铺地,则只有用正三角、正四角、正六角三种正多角砖才能刚好将地铺满,还证明了世界上只有五种正多面体,即:正4、6、8、12、20面体。他还发现了奇数、偶数、三角数、四角数、完全数、友数,直到毕达哥拉斯数。然而他最伟大的成就是发现了后来以他的名字命名的毕达哥拉斯定理(勾股弦定理),即:直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。据说,这是当时毕达哥拉斯在寺庙里见工匠们用方砖铺地,经常要计算面积,于是便发明了此法。
毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“凡物皆数”的观点,数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。毕达哥拉斯还在自己的周围建立了一个青年兄弟会。在他死后大约200年,他的门徒们把这种理论加以研究发展,形成了一个强大的毕达哥拉斯学派。
一天,学派的成员们刚开完一个学术讨论会,正坐着游船出来领略山水风光,以驱散一天的疲劳。这天,风和日丽,海风轻轻的吹,荡起层层波浪,大家心里很高兴。一个满脸胡子的学者看着辽阔的海面兴奋地说:“毕达哥拉斯先生的理论一点都不错。你们看这海浪一层一层,波峰浪谷,就好像奇数、偶数相间一样。世界就是数字的秩序。”“是的,是的。”这时一个正在摇桨的大个子插进来说:“就说这小船和大海吧。用小船去量海水,肯定能得出一个精确的数字。一切事物之间都是可以用数字互相表示的。”
“我看不一定。”这时船尾的一个学者突然提问了,他沉静地说:“要是量到最后,不是整数呢?”
“那就是小数。”“要是小数既除不尽,又不能循环呢?”
“不可能,世界上的一切东西,都可以相互用数字直接准确地表达出来。”
这时,那个学者以一种不想再争辩的口气冷静地说:“并不是世界上一切事物都可以用我们现在知道的数来互相表示,就以毕达哥拉斯先生研究最多的直角三角形来说吧,假如是等腰直角三角形,你就无法用一个直角边准确地量出斜边来。”
这个提问的学者叫希帕索斯(Hippasus),他在毕达哥拉斯学派中是一个聪明、好学、有独立思考能力的青年数学家。今天要不是因为争论,还不想发表自己这个新见解呢。那个摇桨的大个子一听这话就停下手来大叫着:“不可能,先生的理论置之四海皆准。”希帕索斯眨了眨聪明的大眼,伸出两手,用两个虎口比成一个等腰直角三角形说:
“如果直边是3,斜边是几?”
“4。”
“再准确些?”
“4.2。”
“再准确些?”
“4.24。”
“再准确些呢?”
大个子的脸涨得绯红,一时答不上来。希帕索斯说:“你就再往后数上10位、20位也不能算是最精确的。我演算了很多次,任何等腰直角三角形的一边与余边,都不能用一个精确的数字表示出来。”这话像一声晴天霹雳,全船立即响起一阵怒吼:“你敢违背毕达哥拉斯先生的理论,敢破坏我们学派的信条!敢不相信数字就是世界!”希帕索斯这时十分冷静,他说:“我这是个新的发现,就是毕达哥拉斯先生在世也会奖赏我的。你们可以随时去验证。”可是人们不听他的解释,愤怒地喊着:“叛逆!先生的不肖门徒。”“打死他!批死他!”大胡子冲上来,当胸给了他一拳。希帕索斯抗议着:“你们无视科学,你们竟这样无理!”“捍卫学派的信条永远有理。”这时大个子也冲了过来,猛地将他抱起:“我们给你一个最高的奖赏吧!”说着就把希帕索斯扔进了海里。蓝色的海水很快淹没了他的躯体,再也没有出来。这时,天空飘过几朵白云,海面掠过几只水鸟,一场风波过后,这地中海海滨又显得那样宁静了。
一位很有才华的数学家就这样被奴隶专制制度的学阀们毁灭了。但是这倒真使人们看清了希帕索斯的思想价值。这次事件后,毕达哥拉斯学派的成员们确实发现不但等腰直角三角形的直角边无法去量准斜边,而且圆的直径也无法去量尽圆周,那个数字是3.1415926535897932384626……更是永远也无法精确。慢慢地,他们感觉后悔了,后悔杀死希帕索斯的无理行动。他们渐渐明白了,明白了直觉并不是绝对可靠的,有的东西必须靠科学的证明;他们明白了,过去他们所认识的数字“0”,自然数等有理数之外,还有一些无限的不能循环的小数,这确实是一种新发现的数——应该叫它“无理数”。这个名字反映了数学的本来面貌,但也真实的记录了毕达哥拉斯学派中学阀的蛮横无理。
由无理数引发的数学危机一直延续到19世纪。1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。
10篇有关数学的故事或数学的趣闻轶事或数学家的传记。100字的读后感
为何没有诺贝尔数学奖 众所周知,数学对人类的重要性并不亚于以上学科,但是为何没有诺贝尔数学奖呢?诺贝尔不设数学奖的原因,有多种说法:一是诺贝尔几乎没有学过数学,也能取得伟大的成就,根本无法预见或想像数学在推动科学发展上所起的作用,因此忽视了设立数学奖;二是在诺贝尔立下遗嘱的时候,数学领域已经有了一个很有影响的斯堪的那维亚奖,或许诺贝尔觉得没有必要再在自己的奖项中设立数学奖;三是诺贝尔与当时著名的数学家米他格·莱夫勒(Mittag Leffler)有过结,因而故意不设数学奖。
现在比较流行的是第三种说法。米他格·莱夫勒是19世纪末20世纪初瑞典著名的数学家,斯德歌尔摩学院院长,在分析学和复变函数论方面有许多经典性的工作。经过他的苦心经营,瑞典有世界上最好的数学研究图书馆,创刊出版第一流的数学杂志《艾克塔数学》,培养和聘请了一批著名学者,其中俄国女数学家瓦列夫斯卡成为世界上第一位女数学教授,使瑞典一时成为世界上数学人才荟萃的地方。莱夫勒的名声如此之大,如果设立诺贝尔数学奖,他将是第一次获奖的重要人选。
据说诺贝尔有一个比他小13岁的女友——维也纳妇女苏菲(Sophie Hess),诺贝尔曾向她求婚而她态度暧昧,结果诺贝尔发现她和数学家莱夫勒私下交往甚密,最后还私奔了。女友因为莱夫勒而背叛他,诺贝尔一直耿耿于怀,以致于后来终身未娶。后人猜测,可能是诺贝尔不想让莱夫勒获奖,因此在立遗嘱时没有设立数学奖。
加拿大著名数学家菲尔兹(J.C.Fields)曾游学欧洲,与莱夫勒关系十分密切,希望通过自己的努力来与诺贝尔抗衡。1924年菲尔兹在多伦多成功地举办了国际数学家会议,并提议用会议结余的经费设立一个数学奖,在他去世前又立下遗嘱把自己留下的一大笔钱加到结余经费中去作为奖金。1936年在挪威奥斯陆召开的国际数学家会议上,第一次进行评奖。为了纪念他的贡献,确定把这个数学奖命名为菲尔兹奖,并被誉称为数学界的诺贝尔奖。1982年,生于广东汕头的普林斯顿高级研究所终身教授丘成桐获得菲尔兹奖,成为至今获此殊荣的唯一华人数学家。
数学的故事的读后感150字左右
寒假里,我读了一本书,书的名字叫《数学家的故事》,讲述了许多数学名人的故事。比如毕达哥拉斯、阿基米德、高斯……其中,我最感兴趣的是关于祖冲之的故事。
祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过很长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。但是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没有通过,后来在祖冲之去世后10年,《大明历》才颁布实行。
读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正因为他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,都离不开“坚持”两个字。不由地,我想到了许多人,有文化名人、爱国将士,和我身边的同学。记得,妈妈告诉我,她经常在时间紧张的情况下,工作到深夜,不顾身体的疲劳,坚持着把事情做好,然后才会安心入睡。
读《数学家的故事》让我更加喜欢数学,更让我懂得了许多道理。
求一篇读后感1000字左右OK,书名《数学的故事》,急求!跪谢!
翻开书页,一副副神秘的古图把我吸引住了。我放过一页渴望再翻一页……
直到前不久才把这本书看完,可以这样说我脑质为之改。这本浅显易懂的书中,有的只有生动的叙述与精美且神秘且引人深思的插图。从米索不达米亚泥土板到现代计算机精美图象的生成,从一张张残缺的手稿到如今艺术与科技的杰作,从比达哥拉斯到牛顿……她告诉我们在数学领域这精妙的人类智慧故事。一本两百多页的书就能把读者从神奇的远古带到今天,也只有《数学的故事》这本书才可以,真是一次非凡的创举。
这本书由美国的理查德•曼凯维奇先生所著,一共二十四章,从欧几里德的《几何原本》到刘徽的《算经》。我发现了前人超人的智慧。一些现代人不敢想象的观点与理论,却在他们那个时代已发展且近于完善了。刘徽能教我们用切割正方形来求平方根,用切割立方体来求立方根。自认为发达的我们,有几人知道这样来求平方根与立方根,只不过记住几个值而已。
有谁去考虑过宇宙的构造,空间的形成。毕达哥拉斯在公元五百年前就开始思考了。至今也没有人能给我们一个明确的答案,是三维空间,还是四维空间,有四维空间吗?现在是该我们思考了!
这个时代普遍存在一种思维模式,这一模式的实质可以用“数学=学校”来表示.与人们谈及数学时,他们中的大多数人的直接反映是:那是学生时代的经历,我一点也不擅长数学.然而,这种想法是很糟糕的.数学是人类文明活动的核心之一,它促进了人类社会的进步.
本书通过把当时的数学发展情况与数学家本人的评述结合起来的手法,浅显易懂地介绍数学历史,展示出在人类创造文明的实践活动中,数学是怎样与兴趣和实际需求紧密地联系在一起的,而不是罗列一些“伟大的定理”.本书的重点放在对数学发展的历史背景和数学思想的重大进展上,展现数学随着世界各大文化的兴衰而兴衰的精彩片段.知识的火焰从没熄灭过,但在特定的时期,特定文化比其他文化更加耀眼.
数学到底是干什么的?它有什么用处?它为什么是我们认识事物的基础? 数学的所有概念都产生于如何观察问题、解决问题、描述问题的研究中.随着计算能力的增加,数学变得形象化,而数学的精确性和艺术的感知相结合,又会产生一种新的审美观.
读了此书之后,我在思想方法上有所收获,并加深了对数学直至艺术和人文科学的理解.对学理科的人而言,此书尤能让我明白:学习知识不仅要知其然,更要知其所以然,以加深对现有知识的理解.我希望通过在日常的数学教学中加入它栩栩如生的一面,使数学教育更加充满活力,并激发学习数学的热情.

急求数学家的故事 10篇 要短
1.华罗庚勤奋成才
小时候,华罗庚家境贫寒,初中未毕业便辍学在家,辍学之后,他对数学产生了强烈的兴趣,而且也懂得用功读书,他从一本《大代数》,一本《解析几何》及一本50页从老师那儿摘抄来的《微积分》开始,勤奋自学,踏上了通往数学大师的路。
华罗庚辍学期间,帮父亲打理小店铺。为了抽出时间学习,他经常早起。隔壁邻居早起磨豆腐的时候,华罗庚已经点着油灯在看书了。伏天的晚上,他很少到外面去乘凉,而是在蚊子嗡嗡叫的小店里学习。严冬,他常常把砚台放在脚炉上,一边磨墨一边用毛笔蘸着墨汁做习题。每逢年节,华罗庚也不去亲戚家里串门,埋头在家里读书。
白天,华罗庚就帮助他的父亲在小杂货店里干活与站柜台。顾客来了,帮助他父亲做生意,打算盘,记账。顾客走了,就又埋头看书或演算习题。有时入了迷,竟然忘记了接待顾客。时间久了,父亲很生气,干脆把华罗庚演算的一大堆草稿纸拿来就撕,撕完扔到大街上。有时甚至把他的算草纸往火炉里扔。每逢遇到这种时候,华罗庚总是拼命的抱住他视之如命的算草纸,不让他的父亲烧掉。
华罗庚的志气与行径,几乎没有人能够理解。华罗庚和全世界无数的杰出人才一样,困难愈多,克服困难的决心也愈坚。他克服了常人难以想象的困难与阻力。不断前进,这倒反而锻炼了他。没有时间,养成了他早起,善于利用零碎时间,善于心算的习惯。没有书,养成了他勤于动手,勤于独立思考的习惯。这种习惯一直保持到他的晚年。
2.祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
3.高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
4.欧拉于 07年出生在瑞士名城巴塞尔。他的爸爸是位神甫,酷爱数学,在爸爸的书房里,除了不多的神学书之外,满满当当的,全是数学书!从小欧拉略略懂事开始,这位热爱数学的父亲,只要有空,就会把儿子抱在大腿上,给他讲各种有趣的数学故事。
聪明的小欧拉,当然也特别喜欢听爸爸讲数学故事了。你瞧,爸爸刚下班回家,他就拽住了爸爸的黑袍子,要听故事。
“好的,”爸爸说,“今天,爸爸给你讲个关于象棋的故事。从前,印度有个国王叫舍罕。他的大臣发明了象棋。一天,刚和大臣下了一盘象棋的国王,觉得象棋非常好玩,决定重赏大臣。‘国王,’大臣说,‘您只要赏赐给我一些麦子就行了。请在棋盘的第一格里放1粒,第二格里放2粒,第三格里放4粒,第四格里放16粒……以此类推,把64格棋盘放满,就够了!’‘你只要这点赏赐啊,’国王笑得喘不过气来,立刻派人来放麦子。可是,让人想不到的是,棋盘的格子还没放到一半,国库内的麦子就搬光了。”
小欧拉睁大眼睛,出神地望着爸爸,过了好一会儿才问道:“这,怎么可能呢?”
爸爸抚摸着小欧拉的头,说:“孩子,你还不懂,这就是数学上的幂级数。如果把棋盘64格全放满麦粒的话,这些麦子得有18000亿吨。”
“18000亿吨,那是多少啊?”小欧拉闹不明白。
“哦,这样跟你说吧,假设当时印度全年小麦的生产量是100万吨的话,要生产这么多的小麦,要用一百八十万年才行。”
“我的天哪!”小欧拉惊呼起来,“原来,小小的棋盘里,竟然有如此有趣的数学问题!”
这个故事深深震撼了小欧拉的心灵,从此,一颗热爱数学的种子在小欧拉的心灵深处种下了。
5陈景润与哥德巴赫猜想 (这是他的主要成就)
陈景润在福州英华中学读书时,有幸聆听了清华大学调来一名很有学问的数学教师讲课。他给同学们讲了世界上一道数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了‘任何一个偶数均可表示两个素数之和’,简称1+l。他一生没有证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,但始终没有结果,成为世界数学界一大悬案”。老师讲到这里还打个形象的比喻,自然科学皇后是数学,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取皇冠上宝石的艰辛历程......
1953年,陈景润毕业于厦门大学数学系,曾被留校,当了一名图书馆的资料员,除整理图书资料外,还担负着为数学系学生批改作业的工作,尽管时间紧张、工作繁忙,他仍然坚持不懈地钻研数学科学。陈景润对数学论有浓厚的兴趣,利用一切可以利用的时间系统地阅读了我国著名数学家华罗庚有关数学的专著。陈景润为了能直接阅读外国资料,掌握最新信息,在继续学习英语的同时,又攻读了俄语、德语、法语、日语、意大利语和西班牙语。学习这些个国家语言对一个数学家来说已是一个惊人突破了,但对陈景润来说只是万里长征迈出的第一步。
为了使自己梦想成真,陈景润不管是酷暑还是严冬,在那不足6平米的斗室里,食不知味,夜不能眠,潜心钻研,光是计算的草纸就足足装了几麻袋。1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1965年5月,发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,可是这个世界数学领域的精英,在日常生活中却不知商品分类,有的商品名字都叫不出来,被称为“痴人”和“怪人”。
6.
华罗庚
出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师.
少年时期的华罗庚就特别爱好数学,但数学成绩并不突出.19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来.从此在熊庆来先生的引导下,走上了研究数学的道路.晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生! 华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物.下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏: 有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色.
3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子
聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“ 为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题.因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽.但他踌躇了一会,可见我戴的是白帽.
这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了.假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子. 看到这里。同学们可能会拍手称妙吧.后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解.他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃.
7. 数学之父—泰勒斯(Thales)
泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。 泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
8. 苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
9.女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。
17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。
10.高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。
高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。
高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。
她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又著有《极限浅说》《行列式》等科普读物多部。
高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长。
.