八上因式分解题及答案 求因式分解100题答案和题目
求因式分解100题答案和题目
求因式分解100题答案和题目
y-x=-(x-y)
-n-m=-(n+m)
x(b-a)=(-x)(a-b)
3(y-x^2)=-3(x^2-y)
2a(y-x)^2=(2a)(x-y)^2
-3a(y-x)^3=(3a)(x-y)^3
(x+y)(x-y)=-(x+y)(y-x)
3(2+x)(x-2)=(3)(x+2)(x-2)
分解因式4x(2x-y)+2y(y-2x)=2(2x-y)^2
分解因式x(a+b)-y(a+b)=(a+b)(x-y)
分解因式(m-n)^2+2(m-n)^3=(m-n)^2(1+2m-2n)
分解因式21(a-b)^3-35(b-a)^2=7(a-b)^2(3a-3b-5)
分解因式4a(x+y-z)+10a^2(z-x-y)=2a(x+y-z)(2-5a)
二分解因式
2m(a-c)-5(a-c)=(2m-5)(a-c)
3a(x+y)^2-2(y+x)^2=(x+y)^2(3a-2)
x(y-z)-y(z-y)=(y-z)(x+y)
mn(n-m)-n(m-n)=(n-m)(mn+n)=n(n-m)(m+1)
(2a+b)(2a-3b)+a(2a+b)=3(2a+b)(a-b)
x(a-x)-y(x-a)+3(a-x)=(a-x)(x+y+3)
3(x+y)^2-2(x+y)=(x+y)(3x+3y-2)
3(a+b)-4b(a+b)^2=(a+b)(2-4ba-4b^2)
6(a-b)^2-8(a-b)^3=2(a-b)^2(3-4a+4b)
2(x-y)(x+y)-(x-y)^2=(x-y)(2x+2y-x+y)=(x-y)(x+3y)
x^2(m-n)^5-xy(n-m)^4=x(m-n)^4(mx-nx-y)
x^2(m-n)^5-xy(n-m)^3=x^2(m-n)^5+xy(m-n)^3=x(m-n)^3(xm^2+xn^2-2xmn+y)
6(x-y)^3+15(y-x)^2-9(y-x)^3=6(x-y)^3+15(x-y)^2+9(x-y)^3=3(x-y)^2(5x-5y+5)=15(x-y)^2(x-y+1)
你先凑合著看吧,望采纳,O(∩_∩)O哈~
因为以前回答过类似的问题
求因式分解题目答案~~
1.D
2.D
3.A
3.C

因式分解100道题目,包括答案
百度知道多是答题的人,求题目的话比较难,建议自己到百度文库找找看吧。
因式分解的题目+答案!
一、填空题
(1)x2+2x-15=(x-3)(_____)
(2)6xy-x2-5y2=-(x-y)(_____).
(3)________=(x+2)(x-3).
(4)分解因式x2+6x-7=__________.
(5)若多项式x2+bx+c可分解为(x+3)(x-4), 则b=_____, c=_____.
(6)若x2+7x=18成立,则x值为_____。
(7)若x2-3xy-4y2=0,且x+y≠0,则x=_____.
(8)(x-y)2+15(x-y)+14=(_____+1)(x-y+_____).
(9)多项式 x2+3x+2, x2-2x-8, x2+x-2的公因式为_____。
(10)已知a, b为整数,且m2-5m-6=(m+a)(m+b), 则a=_____,b=_____.
二、选择题
(1)若x2+2x+y2-6y+10=0,则下列结果正确的是( )。
A、x=1, y=3 B、x=-1,y=-3 C、x=-1,y=3 D、x=1,y=-3
(2)若x2-ax-15=(x+1)(x-15),则a的值是( )。
A、15 B、-15 C、14 D、-14
(3)如果3a-b=2,那么9a2-6ab+b2等于( )。
A、2 B、4 C、6 D、8
(4)若x+y=4, x2+y2=6,则xy的值是( )。
A、10 B、5 C、8 D、4
(5)分解因式(x2+2x)2+2(x2+2x)+1的正确结果是( )。
A、(x2+2x+1)2 B、(x2-2x+1)2 C、(x+1)4 D、(x-1)4
(6)-(2x-y)(2x+y)是下列哪一个多项式分解因式的结果( )。
A、4x2-y2 B、4x2+y2 C、-4x2-y2 D、-4x2+y2
(7)若x2+2(m-3)x+16是完全平方式,则m的值应为( )。
A、-5 B、7 C、-1 D、7或-1
(8)已知x3-12x+16有一个因式为x+4, 把它分解因式后应当是( )。
A、(x+4)(x-2)2 B、(x+4)(x2+x+1)
C、(x+4)(x+2)2 D、(x+4)(x2-x+1)
三、因式分解
(1) x(x+y+z)+yz (2) x2m+xm+
(3) a2b2-a2-b2-4ab+1
(4) a2(x-y)2-2a(x-y)3+(x-y)4
(5) x4-6x2+5
(6) x4-7x2+1 (7) 3a8-48b8
(8) x2+4y2+9z2-4xy-6xz+12yz
四、解答题
1.已知a2+9b2-2a+6b+2=0,求a,b的值。
2.求证:不论x取什么有理数,多项式-2x4+12x3-18x2的值都不会是正数。
3.已知n为正整数,试证明(n+5)2-(n-1)2的值一定被12整除。
4.已知x+y=4, xy=3,求(1) 3x2+3y2; (2) (x-y)2.
5.设a>0, b>0, c>0且a、b、c中任意两数之和大于第三个数,求证:a2-b2-c2-2bc<0.
五、利用因式分解计算:
(1)已知长方形的周长是16cm, 它的两边长a、b是整数,满足a-b-a2+2ab-b2+2=0,求长方形面积。
(2)如图1,一条水渠,其横断面为梯形,根据图中的长度,求出横断面面积的代数式,并计算出当a=2, b=0.8时的面积。
(3)如图2,在半径为R的圆形钢板上,冲去半径为r的四个小圆,利用因式分解计算当R=7.8cm, r=1.1cm时剩余部分的面积(π取3.14,结果保留三位有效数字)。
答案:
一、(1) x+5 (2) x-5y (3) x2-x-6
(4) (x+7)(x-1) (5) -1, -12 (6) -9或2
(7) 4y (8) x-y, 14 (9) x+2 (10) -6或1,1或-6
二、(1)C (2)C (3)B (4)B (5)C (6)D (7)D (8)A
三、(1) (x+y)(x+z) (2) (xm+)2
(3) (ab-1-a-b)(ab-1+a+b)
(4) (x-y)2(a-x+y)2
(5) (x+1)(x-1)(x2-5)
(6) (x2+3x+1)(x2-3x+1)
(7) 3(a4+4b4)(a2+2b2)(a2-2b2)
(8) (x-2y-3z)2
四、1、a=1, b=-
2、证明:-2x4+12x3-18x2=-2x2(x2-6x+9)=-2x2(x-3)2≤0.
3、证明:(n+5)2-(n-1)2=(n+5+n-1)(n+5-n+1)=6(2n+4)=12(n+2).
∴ (n+5)2-(n-1)2能被12整除。
4、(1) 30 (2) 4
5、提示:将求证左边分组分解成四个整式乘积,然后利用已知条件对每个因式的符号进行讨论。
五、(1) 由题意得
a+b=8, (a-b+1)(a-b-2)=0,
∴ a-b=-1或a-b=2.
∵ a与b是整数, ∴a-b=-1不合题意。
∵ a-b=2, ∴ a=5, b=3.
∴ ab=15,即长方形的面积为15cm2。
(2) 3.36 (3) 176cm2
一、填空题
(1)x2+2x-15=(x-3)(_____)
(2)6xy-x2-5y2=-(x-y)(_____).
(3)________=(x+2)(x-3).
(4)分解因式x2+6x-7=__________.
(5)若多项式x2+bx+c可分解为(x+3)(x-4), 则b=_____, c=_____.
(6)若x2+7x=18成立,则x值为_____。
(7)若x2-3xy-4y2=0,且x+y≠0,则x=_____.
(8)(x-y)2+15(x-y)+14=(_____+1)(x-y+_____).
(9)多项式 x2+3x+2, x2-2x-8, x2+x-2的公因式为_____。
(10)已知a, b为整数,且m2-5m-6=(m+a)(m+b), 则a=_____,b=_____.
二、选择题
(1)若x2+2x+y2-6y+10=0,则下列结果正确的是( )。
A、x=1, y=3 B、x=-1,y=-3 C、x=-1,y=3 D、x=1,y=-3
(2)若x2-ax-15=(x+1)(x-15),则a的值是( )。
A、15 B、-15 C、14 D、-14
(3)如果3a-b=2,那么9a2-6ab+b2等于( )。
A、2 B、4 C、6 D、8
(4)若x+y=4, x2+y2=6,则xy的值是( )。
A、10 B、5 C、8 D、4
(5)分解因式(x2+2x)2+2(x2+2x)+1的正确结果是( )。
A、(x2+2x+1)2 B、(x2-2x+1)2 C、(x+1)4 D、(x-1)4
(6)-(2x-y)(2x+y)是下列哪一个多项式分解因式的结果( )。
A、4x2-y2 B、4x2+y2 C、-4x2-y2 D、-4x2+y2
(7)若x2+2(m-3)x+16是完全平方式,则m的值应为( )。
A、-5 B、7 C、-1 D、7或-1
(8)已知x3-12x+16有一个因式为x+4, 把它分解因式后应当是( )。
A、(x+4)(x-2)2 B、(x+4)(x2+x+1)
C、(x+4)(x+2)2 D、(x+4)(x2-x+1)
三、因式分解
(1) x(x+y+z)+yz (2) x2m+xm+
(3) a2b2-a2-b2-4ab+1
(4) a2(x-y)2-2a(x-y)3+(x-y)4
(5) x4-6x2+5
(6) x4-7x2+1 (7) 3a8-48b8
(8) x2+4y2+9z2-4xy-6xz+12yz
四、解答题
1.已知a2+9b2-2a+6b+2=0,求a,b的值。
2.求证:不论x取什么有理数,多项式-2x4+12x3-18x2的值都不会是正数。
3.已知n为正整数,试证明(n+5)2-(n-1)2的值一定被12整除。
4.已知x+y=4, xy=3,求(1) 3x2+3y2; (2) (x-y)2.
5.设a>0, b>0, c>0且a、b、c中任意两数之和大于第三个数,求证:a2-b2-c2-2bc<0.
五、利用因式分解计算:
(1)已知长方形的周长是16cm, 它的两边长a、b是整数,满足a-b-a2+2ab-b2+2=0,求长方形面积。
(2)如图1,一条水渠,其横断面为梯形,根据图中的长度,求出横断面面积的代数式,并计算出当a=2, b=0.8时的面积。
(3)如图2,在半径为R的圆形钢板上,冲去半径为r的四个小圆,利用因式分解计算当R=7.8cm, r=1.1cm时剩余部分的面积(π取3.14,结果保留三位有效数字)。
答案:
一、(1) x+5 (2) x-5y (3) x2-x-6
(4) (x+7)(x-1) (5) -1, -12 (6) -9或2
(7) 4y (8) x-y, 14 (9) x+2 (10) -6或1,1或-6
二、(1)C (2)C (3)B (4)B (5)C (6)D (7)D (8)A
三、(1) (x+y)(x+z) (2) (xm+)2
(3) (ab-1-a-b)(ab-1+a+b)
(4) (x-y)2(a-x+y)2
(5) (x+1)(x-1)(x2-5)
(6) (x2+3x+1)(x2-3x+1)
(7) 3(a4+4b4)(a2+2b2)(a2-2b2)
(8) (x-2y-3z)2
四、1、a=1, b=-
2、证明:-2x4+12x3-18x2=-2x2(x2-6x+9)=-2x2(x-3)2≤0.
3、证明:(n+5)2-(n-1)2=(n+5+n-1)(n+5-n+1)=6(2n+4)=12(n+2).
∴ (n+5)2-(n-1)2能被12整除。
4、(1) 30 (2) 4
5、提示:将求证左边分组分解成四个整式乘积,然后利用已知条件对每个因式的符号进行讨论。
五、(1) 由题意得
a+b=8, (a-b+1)(a-b-2)=0,
∴ a-b=-1或a-b=2.
∵ a与b是整数, ∴a-b=-1不合题意。
∵ a-b=2, ∴ a=5, b=3.
∴ ab=15,即长方形的面积为15cm2。
(2) 3.36 (3) 176cm2
(7)x2-9x+18= 。
(8)2x2-5x-3= 。
(9)12x2-50x+8= 。
40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。
41.因式分解2ax2-3x+2ax-3= 。
42.因式分解9x2-66x+121= 。
43.因式分解8-2x2= 。
44.因式分解x2-x+14 = 。
45.因式分解9x2-30x+25= 。
46.因式分解-20x2+9x+20= 。
47.因式分解12x2-29x+15= 。
48.因式分解36x2+39x+9= 。
49.因式分解21x2-31x-22= 。
50.因式分解9x4-35x2-4= 。
51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。
52.因式分解2ax2-3x+2ax-3= 。
53.因式分解x(y+2)-x-y-1= 。
54.因式分解(x2-3x)+(x-3)2= 。
55.因式分解9x2-66x+121= 。
56.因式分解8-2x2= 。
57.因式分解x4-1= 。
58.因式分解x2+4x-xy-2y+4= 。
59.因式分解4x2-12x+5= 。
60.因式分解21x2-31x-22= 。
61.因式分解4x2+4xy+y2-4x-2y-3= 。
62.因式分解9x5-35x3-4x= 。
63.因式分解下列各式:
(1)3x2-6x= 。
(2)49x2-25= 。
(3)6x2-13x+5= 。
(4)x2+2-3x= 。
(5)12x2-23x-24= 。
(6)(x+6)(x-6)-(x-6)= 。
(7)3(x+2)(x-5)-(x+2)(x-3)= 。
(8)9x2+42x+49= 。
64.9x2-30x+k可化为完全平方式(3x+a)2,则k= a= 。
65.若x2+mx-15可分解为(x+n)(x-3),m、n皆为整数,则m= n= 。
66.求下列各式的和或差或积或商。
(1)(6512 )2-(3412 )2= 。
(2)(7913 )2+2×7913 ×23 +49 = 。
(3)1998×0.48-798×0.48-798×0.52+1998×0.52= 。
67.因式分解下列各式:
(1)(x+2)-2(x+2)2= 。
(2)36x2+39x+9= 。
(3)2x2+ax-6x-3a= 。
(4)22x2-31x-21= 。
68.利用平方差,和的平方或差的平方公式,填填看
(1)49x2-1=( +1)( -1)
(2)x2+26x+ =(x+ )2
(3)x2-20x+ =(x- )2
(4)25x2-49y2=(5x+ )(5x- )
(5) -66x+121=( -11)2
69.利用公式求下列各式的值
(1)求5992-4992= (2)求(7512 )2-(2412 )2=
(3)求392+39×22+112= (4)求172-34×5+52=
(5)若2x+5y=13 +7 ,x-4y=7 -13 求2x2-3xy-20y2=
70.因式分解3ax2-6ax= 。
71.因式分解(x+1)x-5x= 。
72.因式分解(2x+1)(x-3)-(2x+1)(x-5)=
73.因式分解xy+2x-5y-10=
74.因式分解x2y2-x2-y2-6xy+4= 。
三、计算题
1.因式分解x3+2x2+2x+1
2.因式分解a2b2-a2-b2+1
3.试用除法判别15x2+x-6是不是3x+2的倍式。
4.(1)判别3x+2是不是6x2+x-2的因式?(写出计算式)
(2)如果是,请因式分解6x2+x-2。
5.a=19912 ,b=9912 ,(1)求a2-2ab+b2之值? (2)a2-b2之值?
6.判别2x+1是否4x2+8x+3的因式?如果是,请因式分解4x2+8x+3。
7.因式分解(1)3ax2-2x+3ax-2 (2)(x2-3x)+(x-3)2+2x-6。
8.设6x2-13x+k为3x-2的倍式,求k之值。
9.判别3x是不是x2之因式?(要说明理由)
10.若-2x2+ax-12,能被2x-3整除,求 (1)a=? (2)将-2x2+ax-12因式分解。
11.(1)因式分解ab-cd+ad-bc
(2)利用(1)求1990×29-1991×71+1990×71-29×1991的值。
12.利用平方差公式求1992-992=?
13.利用乘法公式求(6712 )2-(3212 )2=?
14.因式分解下列各式:
(1)(2x+3)(x-2)+(x+1)(2x+3) (2)9x2-66x+121
15.请同学用曾经学过的各种不同因式分解的方法因式分解16x2-24x+9
(1)方法1: (2)方法2:
16.因式分解下列各式:
(1)4x2-25 (2)x2-4xy+4y2 (3)利用(1)(2)之方法求a2-b2+2bc-c2
17.因式分解
(1)8x2-18 (2)x2-(a-b)x-ab
18.因式分解下列各式
(1)9x4+35x2-4 (2)x2-y2-2yz-z2
(3)a(b2-c2)-c(a2-b2)
19.因式分解(2x+1)(x+1)+(2x+1)(x-3)
20.因式分解39x2-38x+8
21.利用因式分解求(6512 )2-(3412 )2之值
22.因式分解a(b2-c2)-c(a2-b2)
23.a、b、c是整数,若a2+b2+c2+4a-8b-14c+69=0,求a+2b-3c的值
24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2
25.因式分解xy2-2xy-3x-y2-2y-1
26.因式分解4x2-6ax+18a2
27.因式分解20a3bc-9a2b2c-20ab3c
28.因式分解2ax2-5x+2ax-5
29.因式分解4x3+4x2-25x-25
30.因式分解(1-xy)2-(y-x)2
31.因式分解
(1)mx2-m2-x+1 (2)a2-2ab+b2-1
32.因式分解下列各式
(1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2
33.因式分解:xy2-2xy-3x-y2-2y-1
34.因式分解y2(x-y)+z2(y-x)
35.设x+1是2x2+ax-3的因式,(1)求a=? (2)求2x2+ax-3=0之二根
36.(1)因式分解x2+x+y2-y-2xy=?
(2)承(1)若x-y=99求x2+x+y2-y-2xy之值?
因式分解题目,求答案,急剧急!
5.n²(m-2)-2+m
=n²(m-2)+(m-2)
=(m-2)(n²+1)
6. y³-1
=y(y²-1)
=y(y+1)(y-1)
7. x^4-x²
=x²(x²-1)
=x²(x+1)(x-1)
8. x³-6x²+9x
=x(x²-6x+9)
=x(x-3)²
跪求30道 因式分解 题目及答案
十字相乘法
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
如:
a²x²+ax-42
首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?),
然后我们再看第二项, +ax这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2。
首先,21和2无论正负,通过任意加减后都不可能是1,只可能是-19或者19,所以排除后者。
然后,再确定是-7×6还是7×-6。
(a×-7)×(a×+6)=a²x²-ax-42(计算过程省略)
得到结果与原来结果不相符,原式+ax 变成了-ax。
再算:
(a×+7)×(a×+(-6))=a²x²+ax-42
正确,所以a²x²+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式。
公式法
公式法,即运用公式分解因式。
公式一般有
1、平方差公式a²-b²=(a+b)(a-b)
2、完全平方公式a²±2ab+b²=(a±b)²
3因式分解编辑
十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。
注意四原则:
1.分解要彻底(是否有公因式,是否可用公式)
2.最后结果只有小括号
3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=
-x(2+3y+4z)
归纳方法:
1.提公因式法。
2.运用公式法。
3.拼凑法。
提取公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式.公因式可以是单项式,也可以是多项式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。
例如:
注意:把
变成
不叫提公因式
公式法
根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。
平方差公式:
反过来为
完全平方公式:
反过来为
反过来为
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
两根式:
立方和公式:a3+b3=(a+b)(a2-ab+b2)
立方差公式:a3-b3=(a-b)(a2+ab+b2)
完全立方公式:a3±3a2b+3ab2±b3=(a±b)3
公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
例如:a2+4ab+4b2 =(a+2b)2
1.分解因式技巧掌握:
①分解因式是多项式的恒等变形,要求等式左边必须是多项式。
②分解因式的结果必须是以乘积的形式表示。
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
2.提公因式法基本步骤:
(1)找出公因式
(2)提公因式并确定另一个因式
①第一步找公因式可按照确定公因式的方法先确定系数再确定字母
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式
③提完公因式后,另一因式的项数与原多项式的项数相同
解方程法
通过解方程来进行因式分解,如:
X2+2X+1=0 ,解,得X1=-1,X2=-1,就得到原式=(X+1)×(X+1)
4分解方法编辑
分组分解法
分组分解是分解因式的一种简洁的方法,下面是这个方法的详细讲解。
能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。
同样,这道题也可以这样做。
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
几道例题:
1. 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。
2. x2-x-y2-y
解法:=(x2-y2)-(x+y)
=(x+y)(x-y)-(x+y)
=(x+y)(x-y-1)
利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。
三一分法,例:a^2-b^2-2bc-c^2
=a^2-(b+c)^2
=(a-b-c)(a+b+c)
十字相乘法
十字相乘法在解题时是一个很好用的方法,也很简单。
这种方法有两种情况。
①x2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) .
例1:x2-2x-8
=(x-4)(x+2)
②kx2+mx+n型的式子的因式分解
如果有k=ab,n=cd,且有ad+bc=m时,那么kx2+mx+n=(ax+c)(bx+d).
例2:分解7x2-19x-6
图示如下:a=7 b=1 c=2 d=-3
因为 -3×7=-21,1×2=2,且-21+2=-19,
所以,原式=(7x+2)(x-3).
十字相乘法口诀:分二次项,分常数项,交叉相乘求和得一次项。
例3:6X2+7X+2
第1项二次项(6X2)拆分为:2×3
第3项常数项(2)拆分为:1×2
2(X) 3(X)
1 2
对角相乘:1×3+2×2得第2项一次项(7X)
纵向相乘,横向相加。
十字相乘法判定定理:若有式子ax2+bx+c,若b2-4ac为完全平方数,则此式可以被十字相乘法分解。
与十字相乘法对应的还有双十字相乘法,也可以学一学。
拆添项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=(bc+ca)(c-a)+(bc-ab)(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).
配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。
例如:x2+3x-40
=x2+3x+2.25-42.25
=(x+1.5)2-(6.5)2
=(x+8)(x-5).
因式定理
对于多项式f(x),如果f(a)=0,那么f(x)必含有因式x-a.
例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).)
注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数
2.对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数
换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。注意:换元后勿忘还元。
例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则
原式=(y+1)(y+2)-12
=y2+3y+2-12=y2+3y-10
=(y+5)(y-2)
=(x2+x+5)(x2+x-2)
=(x2+x+5)(x+2)(x-1).
综合除法
令多项式f(x)=0,求出其根为x1,x2,x3,……,xn,则该多项式可分解为f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn) .
例如在分解2x4+7x3-2x2-13x+6时,令2x4 +7x3-2x2-13x+6=0,
则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.
所以2x4+7x3-2x2-13x+6=(2x-1)(x+3)(x+2)(x-1).
令y=f(x),做出函式y=f(x)的图象,找到函式影象与X轴的交点x1,x2,x3,……xn ,则多项式可因式分解为f(x)= f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn).
与方法⑼相比,能避开解方程的繁琐,但是不够准确。
主元法
例如在分解x3+2x2-5x-6时,可以令y=x3+2x2-5x-6.
作出其影象,与x轴交点为-3,-1,2
则x3+2x2-5x-6=(x+1)(x+3)(x-2)
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
特殊值法
将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例如在分解x3+9x2+23x+15时,令x=2,则
x3+9x2+23x+15=8+36+46+15=105,
将105分解成3个质因数的积,即105=3×5×7 .
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,
则x3+9x2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。
待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例如在分解x4-x3-5x2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。
于是设x4-x3-5x2-6x-4=(x2+ax+b)(x2+cx+d)
相关公式
=x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd
由此可得
a+c=-1,
ac+b+d=-5,
ad+bc=-6,
bd=-4.
解得a=1,b=1,c=-2,d=-4.
则x4-x3-5x2-6x-4=(x2+x+1)(x2-2x-4).
也可以参看右图。
双十字相乘法
双十字相乘法属于因式分解的一类,类似于十字相乘法。
双十字相乘法就是二元二次六项式,启始的式子如下:
ax2+bxy+cy2+dx+ey+f
x、y为未知数,其余都是常数
用一道例题来说明如何使用。
例:分解因式:x2+5xy+6y2+8x+18y+12.
分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。
解:图如下,把所有的数字交叉相连即可
x 2y 2
x 3y 6
∴原式=(x+2y+2)(x+3y+6).
双十字相乘法其步骤为:
①先用十字相乘法分解2次项,如十字相乘图①中x2+5xy+6y2=(x+2y)(x+3y)
②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y2+18y+12=(2y+2)(3y+6)
③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。
④纵向相乘,横向相加。
二次多项式
(根与系数关系二次多项式因式分解)
例:对于二次多项式 aX2+bX+c(a≠0)
.
当△=b2-4ac≥0时,设aX2+bX+c=0的解为X1,X2
=a(X2-(X1+X2)X+X1X2)
=a(X-X1)(X-X2).
5分解步骤编辑
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”
6例题编辑
1.分解因式(1+y)2-2x2(1+y2)+x4(1-y)2.
解:原式=(1+y)2+2(1+y)x2(1-y)+x4(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)(补项)
=[(1+y)+x2(1-y)]2-2(1+y)x2(1-y)-2x2(1+y2)(完全平方)
=[(1+y)+x2(1-y)]2-(2x)2
=[(1+y)+x2(1-y)+2x][(1+y)+x2(1-y)-2x]
=(x2-x2y+2x+y+1)(x^2-x2y-2x+y+1)
=[(x+1)2-y(x2-1)][(x-1)2-y(x2-1)]
=[(x+1)2-y(x+1)(x-1)][(x-1)2-y(x+1)(x-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
2.求证:对于任何整数x,y,下式的值都不会为33:
x5+3x4y-5x3y2-15x2y3+4xy4+12y5.
解:原式=(x5+3x4y)-(5x3y2+15x2y3)+(4xy4+12y5)
=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)
=(x+3y)(x4-5x2y2+4y4)
=(x+3y)(x2-4y2)(x2-y2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。
3..△ABC的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证:这个三角形是等腰三角形。
分析:此题实质上是对关系式的等号左边的多项式进行因式分解。
证明:∵-c2+a2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0.
∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三条边,
∴a+2b+c>0.
∴a-c=0,
即a=c,△ABC为等腰三角形。
4.把-12x2n×yn+18xn+2yn+1-6xn×yn-1分解因式。
解:-12x2n×yn+18xn+2yn+1-6xn×yn-1
=-6xn×yn-1(2xn×y-3x2y2+1).
7四个注意编辑
因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举下例,可供参考。
例1 把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-[(a-b)2-4]=-(a-b+2)(a-b-2)
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。
这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y(x+1)(4x2-9)的错误,因为4x2-9还可分解为(2x+3)(2x-3)。
考试时应注意:
在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!
由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。
8应用编辑
1. 应用于多项式除法。
:a(b−1)(ab+2b+a)
说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).
2. 应用于高次方程的求根。
3. 应用于分式的通分与约分
顺带一提,梅森合数分解已经取得一些微不足道的进展:
1,p=4r+3,如果8r+7也是素数,则:(8r+7)|(2P-1)。即(2p+1)|(2P-1)
例如:
23|(211-1);;11=4×2+3
47|(223-1);;23=4×5+3
167|(283-1);,,,.83=4×20+3
2,p=2n×32+1,,则(6p+1)|(2P-1),
例如:223|(237-1);37=2×2×3×3+1
439|(273-1);73=2×2×2×3×3+1
3463|(2577-1);577=2×2×2×2×2×2×3×3+1
3,p=2n×3m×5s-1,则(8p+1)|(2P-1)
例如;233|(229-1);29=2×3×5-1
1433|(2179-1);179=2×2×3×3×5-1
1913|(2239-1);239=2×2×2×2×3×5-1
9分解公式编辑
平方差公式
(a+b)(a-b)=a2-b2
完全平方公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
立方和(差)
两数差乘以它们的平方和与它们的积的和等于两数的立方差。
即a3-b3=(a-b)(a2+ab+b2)
证明如下:( a-b)3=a3-3a2b+3ab2-b3
所以a3-b3=(a-b)3-[-3(a2)b+3ab2]=(a-b)(a-b)2+3ab(a-b)
=(a-b)(a2-2ab+b2+3ab)=(a-b)(a2+ab+b2)
同理 a3+b3=(a+b)(a2-ab+b2)
十字相乘公式
十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。
(x+a)(x+b)=x2+(a+b)x+ab
不知道需要什么难度的,所以还是答方法
初二因式分解题目及答案
1.x²-1=(x+1)(x-1)
2.x²+2x+1=(x+1)²
3.x²-6x+9=(x-3)²
4.x²-3x-4=(x+1)(x-4)
5.x²-12x+11=(x-1)(x-11)
6.3x²-2x-5=(3x-5)(x+1)
100道 因式分解题与答案
1.把下列各式分解因式
(1)12a3b2-9a2b+3ab;
(2)a(x+y)-(a-b)(x+y);
(3)121x2-144y2;
(4)4(a-b)2-(x-y)2;
(5)(x-2)2+10(x-2)+25;
(6)a3(x+y)2-4a3c2.
2.用简便方法计算
(1)6.42-3.62;
(2)21042-1042
(3)1.42×9-2.32×36
第二章 分解因式综合练习
一、选择题
1.下列各式中从左到右的变形,是因式分解的是( )
(A)(a+3)(a-3)=a2-9 (B)x2+x-5=(x-2)(x+3)+1
(C)a2b+ab2=ab(a+b) (D)x2+1=x(x+ )
2.下列各式的因式分解中正确的是( )
(A)-a2+ab-ac= -a(a+b-c) (B)9-6x2y2=3(3-2xy)
(C)3a2x-6bx+3x=3x(a2-2b) (D) xy2+ x2y= xy(x+y)
3.把多项式m2(a-2)+m(2-a)分解因式等于( )
(A)(a-2)(m2+m) (B)(a-2)(m2-m) (C)m(a-2)(m-1) (D)m(a-2)(m+1)
4.下列多项式能分解因式的是( )
(A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+4
5.下列多项式中,不能用完全平方公式分解因式的是( )
(A) (B) (C) (D)
6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )
(A)4x (B)-4x (C)4x4 (D)-4x4
7.下列分解因式错误的是( )
(A)15a2+5a=5a(3a+1) (B)-x2-y2= -(x2-y2)= -(x+y)(x-y)
(C)k(x+y)+x+y=(k+1)(x+y) (D)a3-2a2+a=a(a-1)2
8.下列多项式中不能用平方差公式分解的是( )
(A)-a2+b2 (B)-x2-y2 (C)49x2y2-z2 (D)16m4-25n2p2
9.下列多项式:①16x5-x;②(x-1)2-4(x-1)+4;③(x+1)4-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果含有相同因式的是( )
(A)①② (B)②④ (C)③④ (D)②③
10.两个连续的奇数的平方差总可以被 k整除,则k等于( )
(A)4 (B)8 (C)4或-4 (D)8的倍数
二、填空题
11.分解因式:m3-4m= .
12.已知x+y=6,xy=4,则x2y+xy2的值为 .
13.将xn-yn分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为 .
14.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= . (第15题图)
15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 .
三、(每小题6分,共24分)
16.分解因式:(1)-4x3+16x2-26x (2) a2(x-2a)2- a(2a-x)3
(3)56x3yz+14x2y2z-21xy2z2 (4)mn(m-n)-m(n-m)
17.分解因式:(1) 4xy–(x2-4y2) (2)- (2a-b)2+4(a - b)2
18.分解因式:(1)-3ma3+6ma2-12ma (2) a2(x-y)+b2(y-x)
19、分解因式
(1) ; (2) ;
(3) ;
20.分解因式:(1) ax2y2+2axy+2a (2)(x2-6x)2+18(x2-6x)+81 (3) –2x2n-4xn
21.将下列各式分解因式:
(1) ; (2) ; (3) ;
22.分解因式(1) ; (2) ;
23.用简便方法计算:
(1)57.6×1.6+28.8×36.8-14.4×80 (2)39×37-13×34
(3).13.7
24.试说明:两个连续奇数的平方差是这两个连续奇数和的2倍。
25.如图,在一块边长为a厘米的正方形纸板四角,各剪去一个边长为 b(b< )厘米的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积。
26.将下列各式分解因式
(1)
(2) ;
(3) (4)
(5)
(6)
(7) (8)
(9) (10)(x2+y2)2-4x2y2
(12).x6n+2+2x3n+2+x2 (13).9(a+1)2(a-1)2-6(a2-1)(b2-1)+(b+1)2(b-1)2
27.已知(4x-2y-1)2+ =0,求4x2y-4x2y2+xy2的值.
28.已知:a=10000,b=9999,求a2+b2-2ab-6a+6b+9的值。
29.证明58-1解被20∽30之间的两个整数整除
30.写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解).
31.观察下列各式:
12+(1×2)2+22=9=32
22+(2×3)2+32=49=72
32+(3×4)2+42=169=132
……
你发现了什么规律?请用含有n(n为正整数)的等式表示出来,并说明其中的道理.
32.阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是 ,共应用了 次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法 次,结果是 .
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).
34.若a、b、c为△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0。探索△ABC的形状,并说明理由。
35.阅读下列计算过程:
99×99+199=992+2×99+1=(99+1)2=100 2=10 4
1.计算:
999×999+1999=____________=_______________=_____________=_____________;
9999×9999+19999=__________=_______________=______________=_______________。
2.猜想9999999999×9999999999+19999999999等于多少?写出计算过程。
36.有若干个大小相同的小球一个挨一个摆放,刚好摆成一个等边三角形(如图1);将这些小球换一种摆法,仍一个挨一个摆放,又刚好摆成一个正方形(如图2).试问:这种小球最少有多少个?
图1 图2
因式分解题目,急求答案,可加悬赏
1、x^4+64
=x^4+16x²+64-16x²
=(x²+8)²-16x²
=(x²+8+4x)(x²+8-4x)
2、x^8+x^4y^4+y^8
=x^8+2x^4y^4+y^8 -x^4y^4
=(x^4+y^4)²-(x²y²)²
=(x^4+x²y²+y^4)(x^4-x²y²+y^4)
因式分解题求答案
1 四分之一x^+y^减xy=(x/2-y)^2
2 (a+b)^减25b^=(a+b+5b)(a+b-5b)=(a+6b)(a-4b)
3 (a^+81)^ - 324a^=(a^+81+18a)(a^+81-18a)=(a+9)^2(a-9)^2
4 -16a^+9b^=(3b-4a)(3b+4a)
5 x^减x减6=(x-3)(x+2)