三菱电机显示pc故障 空调常见故障及其处理方法.
空调常见故障及其处理方法.
空调常见故障及其处理方法.
空调使用频率越越众空调故障却给居民带烦恼空调见故障都哪些呢居民该何解决些故障呢面专业空调维修员简单您介绍: 空调见故障1、空调漏水:问题见太空调维修四台要修漏水其既没装原间没清洗造排水管堵塞导致漏水于空调维修工讲简单般十几钟搞定算问题 空调见故障2、空调噪音:室外机噪声:见主要空调安装候空调室外机固定牢导致空调启产振再室外机散热扇叶问题需更换扇叶即至于压缩机本身噪声我能力实行能淘汰 空调见故障3.、空调异味:空调风口吹风气味现种情况空调现能制冷能致病室内机冷凝器面太脏间没清洗造脏东西发霉发臭所致及清洗极能让换呼吸道面疾病清洗起容易要超市买空调专用消毒剂往室内机冷凝器面喷即马外面水管面看黑乎乎脏东西流留清;亮干净自没 空调见故障4、空调制冷:夏空调制冷见首先要考虑空调没雪种要没雪种加导致空调制冷原空调太脏空调室外机安装间隙太等些原都排除空调制冷需要找专业空调维修员解决 空调见故障5、空调跳闸:空调执行段间跳闸办?首先要排除空调电源线按规定接电源间使用电线导致空调跳闸种情况比较少见安装候工知道问
“JZ—7”空气制动机的常见故障及其处理方法?
JZ-7制动机最常见的故障是单、自阀、中继阀、分配阀排风口漏风,可用检查锤轻轻敲打阀体,有时很见效
自阀调整阀排风口不排风或排风缓慢,均衡风缸、制动管均不减压或减压缓慢。
原因:
(1)自阀调整阀排气阀弹簧折断或排气阀弹簧压盖松脱;
(2)自阀调整部排气阀排风槽小或有污物堵。
(3)自阀调整阀排气阀弹簧压盖上的f1.3毫米孔堵死或有污物堵。
自阀施行制动减压时,调整阀凸轮得到降程,柱塞拉动供气阀随凸轮的降程移动,供气阀与排气阀分离,此时,排气阀弹簧应伸张,推排气阀离开阀座,开启排气口,使均衡风缸压力经排气口及弹簧压盖上的f1.3毫米孔排入大气。如排气阀弹簧折断、压盖松脱、或排气孔堵,则会造成均衡风缸不减压或减压缓慢,中均管压力不下降或下降缓慢使制动管不减压。
执行中,应使用紧急制动使列车停车。停车后,解体调整阀检查,如压盖松脱,装上并紧固即可;如弹簧折损,可取下非操纵端自阀调整阀的排气阀弹簧装上即可恢复正常执行,回段报修;如孔堵塞应清扫排风孔。
均衡风缸减压正常,制动管压力不下降。
原因:
(1)中继阀排风口堵;
(2)中继阀顶杆折断或松脱;
(3)中继阀制动管塞门关闭或制动管堵。
施行自阀紧急制动,待制动管压力降为零后,自阀回运转位充风,观察制动管的压力变化,如压力上升正常,为中继阀排风口堵塞;如制动管压力上升不正常,为中继阀顶杆折断或脱落;如压力不上升为原因(3)。
如排风口堵塞,可拆下排风口缩堵进行清扫;如顶杆故障,可与非操纵端中继阀互换后维持执行;如检查塞门位置正常应清扫制动管路。
均衡风缸减压正常,但当自阀调整阀停止排风后。制动管压力仍持续下降,直至为零,制动缸压力成比例上升至限压值。
原因:
(1)制动管系统漏泄;
(2)中继阀排气阀关闭不严;
(3)紧急风缸管系漏泄;
(4)分配阀副阀部局减通路漏泄。
当自阀手把置于制动区时,因中继阀的总风遮断阀处于关闭状态,因此,上述四处如发生漏泄,中继阀不能给予补偿,则使制动管压力持续下降。其判断方法为:
(1)如中继阀排风口仍有排风音响,为中继阀排气阀漏;
(2)当调整阀停止排风后,自阀回运转位充风至定压后迅速移到取把位,如制动管压力不下降,为局减通路漏;再将自阀手把由取把位移到过量减压位,如分配阀紧急阀部不动作,制动管压力不降为零,为紧急风缸管系漏;
(3)排除上述原因后,为制动管系统漏。
均衡风缸制动管减压50千帕,制动缸压力上升到常用限压值。
原因:
(1)分配阀主阀小膜板破损窜风;
(2)分配阀主阀小膜板上方缩口堵死。
分析:主阀小膜板破损或其上方缩孔堵塞后,因主阀小膜板上方与下方压力差较小或小膜板上方无压力,则主阀形成制动后无法实现自动保压,其供气阀始终开放,使作用风缸压力持续上升,直至达到常用限压阀的限压值时,在常用限压阀的作用下而使作用风缸停止增压。因主阀小膜板下方通过阀体管座上25号管与大气相通,如小膜板破损,在自阀实行制动后,同时会使25号管处排风不止(此时,根据膜板破损程度,制动缸压力可能低于常用限压值,也可能无压力);而如小膜板上方缩孔堵塞,则25号管处不排风,制动缸压力可上升到常用限压值。
处理:清扫缩孔,如膜板破损一时无法处理时,可维持执行。如漏泄过大,在自阀制动时,影响空气系统的正常工作时,可关闭分配阀制动管及总风缸塞门,切除分配阀维持执行,但应注意,自阀制动时,应使用单阀控制机车的制动或缓解。
均衡风缸、制动管减压正常,制动缸压力追随总风压力。
原因:
作用阀膜板上方缩口堵塞。
分析:自阀实施制动后,作用风缸的风压进入作用阀膜板下方,使作用阀形成制动,但由于膜板上方缩孔堵塞,使膜板上方不能建立压力,则供气阀始终开放,使制动缸压力持续上升到总风缸压力。
处理:
清扫缩孔,或更换作用阀。
均衡风缸、制动管减压正常,但制动缸压力表显示为零。
原因:
(1)操纵端一侧的转向架制动缸塞门关闭;
(2)制动缸压力表故障或表管堵;
(3)分配阀变向阀卡死在作用风缸侧;
(4)作用阀膜板破损或3、12、14号管堵死。
分析判断:
(1)如仅某一台转向架不制动,为原因(1);
(2)如机车制动、缓解均正常为原因(2);
(3)如单阀制动、缓解正常,仅自阀操纵时机车不制动为原因(3);
(4)如自阀、单阀制动时,机车均不制动或制动缸压力很低,且作用阀排风口排风(缓解位时不排风),为作用阀膜板破损,否则为作用阀的3、12、14号任一管堵死。
处理:
(1)开放塞门;
(2)暂不处理;
(3)分解第一变向阀消除卡滞;
如作用阀膜板破损,应急处理可关闭作用阀的总风塞门后,卸下作用阀下盖,取出作用鞲鞴及空心阀杆并堵死作用阀排风口,然后装上下盖即可维持执行。此时的作用阀只是将作用管与制动缸管连通而不起任何控制作用。当自阀制动时,机车制缸由分配阀主阀供风,单阀制动时,由单阀调整阀供风,但须注意,因制动缸管系容积较大,机车的制动或缓解作用均较正常时慢,应谨慎操作。
自阀手把由运转位移到过量减压位,均衡风缸、制动管减压量应为240~260千帕,制动管压力上升到350千帕或420千帕,再将自阀手把移到最小减压位,制动管压力随均衡风缸压力的上升而上升,制动缸压力下降为零。
原因:
(1)缓解柱塞阀总风管或柱塞中心孔堵死;
(2)客货车转换阀柱塞在客车位;
(3)8号管堵死或大漏。
判断:
(1)将客货车转换置于相反位如能恢复正常为转换阀柱塞在客车位;
(2)如同时发生过充位无过充压力及紧急制动时撒砂管无风,为缓解柱塞阀总风管堵死;
(3)自阀手把置于制动区后,将客货转换阀旋至客车位,如转换阀处有排风音响,为中继阀处8号管堵;如无风排出,为自阀处8号管堵。
处理:
(1)正确放置客货车转换阀位置;
(2)清扫通路。
如为故障(2)或(3),一时无法处理又必须维持执行时,途中操纵自阀制动时,严格禁止自阀手把在制动区回移,以免造成全列车自然缓解而发生事故。
单伐制动制动区制动缸无压力
原因:
(1)两变向阀柱塞卡死;
(2)单阀调整阀膜板破损;
(3)单阀调整阀柱塞与凸轮接触处的触头脱落。
判断处理:
如操纵自阀时制动缸压力正常,为第一变向阀(分配阀变向阀)卡死;如换端操纵单阀时制动缸压力正常为第二变向阀(单阀变向阀)卡死;如手把移到制动区时,调整阀排气口出现排气,制动缸无压力或压力很低为调整阀膜板破损;如单阀由制动区移到运转位时,调整阀排风口不排风为原因(3)。
拆下变向阀清洗后重新组装。如为膜板破损或触头脱落可与非操纵端单阀互换使用。
单伐制动制动区制动缸压力上升不稳定或追随总风缸压力。
原因:
单阀调整阀膜板处的缩口堵小或堵死。
分析:
该缩口堵死后,当手把在制动区时,因膜板空气腔内无压力,受调整弹簧张力作用,,供气口将始终开放,使单独作用管的空气压力出现追随总风缸压力的现象。如该缩口半堵时,则会使制动缸压力上升不稳定。
处理:
清扫风堵;应急时可与非操纵端单阀互换。
单阀手把由全制动位逐渐移回到运转位时,制动缸压力不下降或降不到零。
原因:
调整阀柱塞弹簧折损或柱塞卡滞。
分析:单阀手把移到运转位时,调整阀凸轮得到了最大的降程,在柱塞弹簧张力及11号管压力空气作用下,柱塞随凸轮的降程而右移,则排气阀开启,11号管降压,如柱塞弹簧折损后,手把在接近运转位时11号管的空气压力已较低,则柱塞无法移到缓解位,使制动缸压力降不到零,如柱塞卡死在制动位位置时,则制动缸压力不下降。
处理:
此故障对机车安全运用危害极大,极易造成轮箍弛缓事故,运用中遇此故障,应将单阀手把由全制动位迅速移到运转位,利用较高的11号管压力使柱塞回到运转位。如柱塞弹簧折损应及时更换;如柱塞卡滞时应拆下清洗后重新组装,必要时与非操纵端单阀互换
空调入门知识及常见故障与处理方法?
一、家用空调的分类
1、按结构分类:整体式又叫窗式和分体式两种空调器
2、按功能分类:单冷式和冷热式
3、按操作方式分类:普通式、线控式与遥控式
4、其他分类方式:室内机数理分为一拖二、一拖三;气候环境分类为T1、T2、T3型,我国一般采用T1型空调器。
二、家用空调器的基本结构
由制冷系统、通风系统、电气控制系统和箱体系统四部分组成
制冷系统是每种空调器最基本的系统,它是实现空调器制冷或制热功能的主要部分。
通风系统是实现热交换的部分,它把制冷系统所产生的冷量送到室内去,并把冷凝器中的热量送到室外去。
电气控制是空调器的作业系统,有机械式控制和电子式控制两种方式,有了它才能使空调器按照人们的意愿去工作。
箱体系统是空调器的支撑基架,各种零部件都安装在它的上面。四个系统按照各自的功能组成一个整体,就成了一台完整的空调器。
三、空调器的工作原理及主要功能
通过压缩机给氟里昂提供的原动力,使氟在整个系统中沿某个方向流动,通过在系统中某位置加毛细管的方法控制氟里昂的三态转化,从而达到吸热和放热的目的,其吸放的热通过蒸发器、冷凝器扩散能面积,并通过内外风机吹动使能量迅速扩散而达到散热的目的。
空调的主要功能:降低温度、除溼防潮:滤清空气;新型空调上装有静电空气滤清器,可以有效过虑0.01微米的尘埃颗粒。
四、空调器的规格及型号
1、空调器的规格
是按制冷量(或制热量)划分的。制冷量是指空调器在制冷执行时,单位时间内从房间内或某个区域内吸收并转移到其它区域的热量。国家标准规定,计算单位是“瓦”或“千瓦”,符号为“W”或“KW”。市场上部分厂家和消费者也有采用“匹”来表示空调规格的,匹是以前所使用的一种功率单位,它和“瓦”的关系是1马力约等735瓦。一般1匹空调即2500W,2匹即5000W,3匹即7100W。
选择空调时,应先测量一下自己的单个居室的使用面积,然后按照150—200W每平方乘以您的房间使用面积,即知道您需要的制冷量,一般情况下一匹(2500W)适合的房间使用面积为11---15平方米,一匹半(3500W)适合房间的使用面积为18----25平方米,有些空调的本身的质量决定其制冷量的大小,须视品牌而定。
空调器的连线管路最大允许长度的规定一匹最长不能超过8米,1.5-2匹最长不能超过10米,2匹以上不能超过15米。室内、外机的高度差不超过5米。
2、国产空调符号的含义:
如型号:KF(R)--23GW、KC—23、KF—50LW ,K代表空调 F代表分体 R代表冷暖 C代表窗机 横杠后数字代表民义制冷量如:23代 表制冷量为2300W, L代表室内落地式 G代表室内挂机 , W代表室外机。
五、分体空调与窗式空调的主要差别
分体式空调可令室内噪音降低一般在40dB左右,但结构安装较复杂,而窗式空调安装简单,且安装时不会漏氟,制造成本较低.但噪音较大一般在50dB左右,适用面积较小。
.空调的噪音产生的原因:主要由电机、压缩机、出风孔产生,但压缩机的频繁启动,以及安装不当也会造成噪音。
空调维修推荐步骤:
1、 询问及听取使用方介绍:机组的安装时间,从安装到当天的使用情况,是否有过维修史及维修的内容,谁维修过。
2、 开机观察机组的执行情况,找出不正常的方面,再由此罗列出出现问题的各种可能,扩大怀疑物件到最大,包括使用方法和安装的缺陷。
3、 对可能出现的故障源逐一排查,排查的顺序如下:使用者的使用方法 安装存在的问题和缺陷 机组结构问题 电源部分故障 系统问题(包括水系统和氟系统)
4、 压缩机可执行的,查询相关各点的温度,也可用手指感应各温度点,包括吸气温度,压缩机机体温度,每根毛细管前后端温度,热力膨胀阀前后端温度、过滤器两端温度等,无法判断表面温度及是否带电的地方尽量用手指指背感应
5、 压缩机已无法执行的机组,需查询导致压缩机损坏的各种可能,如系统缺氟、汽液分离器焊反、内外机落差过大且无回油弯、所用配管小或有扁管超过1/3的现象、配管过长、杂质进到汽液分离器堵塞回油孔、杂质进入压缩机等等。更换压缩机前应先排除这些问题并清洁系统。
更换压缩机流程及注意事项:
1、 新压缩机运输过程中不可倒置和碰撞,到达现场后不要马上开启管塞;
2、 重新通电覆查一遍压缩机的状态,并注意节流装置和过滤器是否有堵,以确定更换压缩机时是否需要一并处理,特别是干噪过滤器;
3、 确认压缩机坏后开始准备放氟,为防止冻伤各种接线,应使用充氟软管从低压侧检测阀接出机组以外合适的地方进行放氟;
4、 用手指感觉管口已无明显压力时,把软管接到高压检测管以确保系统氟已放净;取下压缩机排气口,去除高压检测管上的充氟管;
5、 取下压缩机吸气口,此时观察泄出的压缩机油颜色,如果压缩机油偏离正常色,则结合第二条的判断决定是否取下节流装置、汽液分离器和各种过滤器,进行处理或更换;
6、 用高压氮气对剩下的管路进行反复吹扫,为确保吹扫的彻底性,有必要对特长管路及中部有小管径的管路取开进行分段吹扫,直到系统无油及各种颗粒物吹出;
7、 焊接各取开点及压缩机(此时开启压缩机管塞),在焊接过程中须全程通低压氮气进行氧气置换; 焊接完后应使焊接部分温度降至200℃以下才能停止氮气流通。
8、 检漏:通入氮气后压力应稳定在25kg左右,如无专用检漏装置,则用一定浓度洗洁精水或肥皂水对焊点进行涂抺,以长时间无气泡为准;
9、 抽真空:用专用真空泵进行抽真空,根据系统大小及配管长短选用不同的真空泵,如用小真空泵抽大系统则相应延长抽空时间,所接压力表负值不明显时应确定抽空时间,压力表只作为辅助判定依据,热泵机组需高低压同时抽空,65机用2磅真空泵抽空时间大约需1小时;
10、 加氟:达到真空度后才可以向系统内加氟,液态制冷剂在远离压缩机而靠近冷凝器的检测阀加入,加氟的同时加热带通电,加入达到整个系统标准充注的70%-80%左右时停止3-5分钟,对压缩机点动5-7次,开机从压缩机吸气口加入气态制冷剂直至标准充注;
记忆体常见故障及处理方法
一、记忆体常见故障描述:
故障1:开机后,机箱发出“嘟—,嘟—”的长声,显示器是黑的。
故障2:开机后,无法进入系统桌面,不断重启。
故障3:开机后,机箱内除风扇转动外没有其它任何声音,显示器是好的,但一片漆黑。
二、解决方法:
1、关闭主机总电源。
2、开启机箱,将机箱固定主机板一面平放于地面上,找到记忆体条,用双手大拇指按住记忆体条两端,稍用力左右摇晃。
3、重新开机,检查下计算机能否正常启动。
4、若不行再次关闭总电源,在记忆体条插槽两边的白色卡口轻轻向下按,取出记忆体条,再重新装回。
5、重新开机,检查下计算机能否正常启动。
6、如果故障仍然未解决,就得将记忆体条再次取下,换到另外记忆体条插槽中尝试下,一般的电脑记忆体条插槽有两到三个。
7、如果故障仍旧,那可能就是记忆体条本身的原因了,应考虑更换一条新的记忆体条。
电机常见故障及处理方法
电动机常见故障的分析和处理:
(一)时机接通后,电动机不能起动,但有嗡嗡声
可能原因:
(1)电源没有全部接通成单相起动;
(2)电动机过载;
(3)被拖动机械卡住;
(4)绕线式电动机转子回路开路成断线;
(5)定子内部首端位置接错,或有断线、短路。
处理方法:(1)检查电源线,电动机引出线,熔断器,开关的各对触点,找出断路位置,予以排除;(2)解除安装后空载或半载起动;(3)检查被拖动机械,排除故障;(4)检查电刷,滑环和起动电阻各个接触器的接合情况;(5)重新判定三相的首尾端,并检查三相绕组是否有灿线和短路。
(二)电动机起动困难,加额定负载后,转速较低。
可能原因:
(1)电源电压较低;
(2)原为角接误接成星接;
(3)鼠笼型转子的笼条端脱焊,松动或断裂。
处理方法:(1)提高电压;(2)检查铭牌接线方法,改正定子绕组接线方式;(3)进行检查后并对症处理。
(三)电动机起动后发热超过温升标准或冒烟
可能原因:
(1)电源电压过低,电动机在额定负载下造成温升过高;
(2)电动机通风不良或环境溼度过高;
(3)电动机过载或单相执行;
(4)电动机起动频繁或正反转次数过多;
(5)定子和转子相擦。
处理方法:(1)测量空载和负载电压;(2)检查电动机风扇及清理通风道,加强通风降低环温;(3)用钳型电流表检查各相电流后,对症处理;(4)减少电动机正反转次数,或更换适应于频繁起动及正反转的电动机;(5)检查后姨症处理。
(四)绝缘电阻低
可能原因:
(1)绕组受潮或淋水滴入电动机内部;
(2)绕组上有粉尘,油圬;
(3)定子绕组绝缘老化。
处理方法:(1)将定子,转子绕组加热烘干处理;(2)用汽油擦洗绕组端部烘干;(3)检查并恢复引出线绝缘或更换接线盒绝缘线板;(4)一般情况下需要更换全部绕组。
(五)电动机外壳带电:
可能原因:
(1)电动机引出线的绝缘或接线盒绝缘线板;
(2)绕组端部碰机壳;
(3)电动机外壳没有可靠接地
处理方法:(1)恢复电动机引出线的绝缘或更换接线盒绝缘板;(2)如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;(3)按接地要求将电动机外壳进行可靠接地。
(六)电动机执行时声音不正常
可能原因:
(1)定子绕组连线错误,区域性短路或接地,造成三相电流不平衡而引起噪音;
(2)轴承内部有异物或严重缺润滑油。
处理方法:(1)分别检查,对症下药;(2)清洗轴承后更换新润滑油为轴承室的1/2-1/3。
减速机常见故障及处理方法
由于减速机执行环境恶劣,常会出现磨损、渗漏等故障,最主要的几种是:
1、减速机轴承室磨损,其中又包括壳体轴承箱、箱体内孔轴承室、变速箱轴承室的磨损;
2、减速机齿轮轴轴径磨损,主要磨损部位在轴头、键槽等;
3、减速机传动轴轴承位磨损;
4、减速机结合面渗漏。
针对磨损问题,传统解决办法是补焊或刷镀后机加工修复,但两者均存在一定弊端:补焊高温产生的热应力无法完全消除,易造成材质损伤,导致部件出现弯曲或断裂;而电刷镀受涂层厚度限制,容易剥落,且以上两种方法都是用金属修复金属,无法改变“硬对硬”的配合关系,在各力综合作用下,仍会造成再次磨损。对一些大的轴承企业更是无法现场解决,多要依赖外协修复。当代西方国家针对以上问题多使用高分子复合材料的修复方法,其具有超强的粘着力,优异的抗压强度等综合性能。应用高分子材料修复,可免拆卸免机加工既无补焊热应力影响,修复厚度也不受限制,同时产品所具有的金属材料不具备的退让性,可吸收装置的冲击震动,避免再次磨损的可能,并大大延长装置部件的使用寿命,为企业节省大量的停机时间,创造巨大的经济价值。
而针对渗漏问题,传统方法需要拆卸并开启减速机后,更换密封垫片或涂抹密封胶,不仅费时费力,而且难以确保密封效果,在执行中还会再次出现泄漏。高分子材料可现场治理渗漏,材料具备的优越的粘着力、耐油性及350%的拉伸度,克服减速机振动造成的影响,很好地为企业解决了减速机渗漏问题。
水环式真空泵的常见故障及其处理
水环泵主要用水来密封保证水的来源不断真空泵两端密封垫不露水真空度是没有问题,水质一定要好若不然泵体内要结垢,吸气通道及排气通道叶轮越来越小,影响真空度,做好这几点若干年没有问题
KD一1600型罐蒸机常见故障及处理方法
配置上没有。只不过被运营商加了网路锁。只能用自家的3G别的只可以用2G
遮蔽泵的常见故障及处理方法
遮蔽泵故障分析判断:
1、由解体泵时部件的磨损情况分析判断:
A、泵体口环和叶轮口环有磨损,说明轴承内径过量磨损,需更换轴承。
B、叶轮前盖板与泵体有磨损,说明前轴承端面过量磨损,需更换轴承。
C、轴承内径磨损,轴套、推力盘磨损并颜色变黑,说明电机腔内气体没有排净、缺液或空转,需更换备件。
D、前轴承端面与推力盘表面磨损,后部轴承、推力盘无磨损,说明轴推力向前,泵处于缺液状态。检查入口过滤器是否堵塞、系统是否供液不足、泵是否发生汽蚀。
E、后轴承端面与推力盘表面磨损,前部轴承、推力盘无磨损,说明轴推力向后,有可能流量过大,检查是否出口阀开启过大。
F、定、转子遮蔽套磨损,而轴承内径尺寸没有超过极限值,说明有异物进入电机腔内,检查入口过滤器有无损坏。
2、由泵的振动、噪音分析判断:
A、泵有振动,振源来自于电机部分的两轴承为置,说明轴承有磨损,需检查轴承磨损情况。
B、泵有振动,振源来自于泵体处,出口阀关闭泵压力正常,但阀门一开启压力表指示突然下降,且执行电流低于正常值,说明泵 汽蚀状态,需提高进口液位高度满足:装置汽蚀余量=1.3×泵汽蚀余量。
C、泵振动、有噪音、TRG表指示在红区、泵出口压力表大不大正常压力,说明泵反转,需调整动力线相序。
3、由TRG表指示分析判断:
A、表指示在黄区或红区(其它情况正常),说明轴承已磨损需更换。
B、表指示在绿区,但电机侧轴承部位有振动,解体后轴承已经过量磨损,说明模组有故障不能正常指示需更换。
C、第一次开泵或重新连线动力线后(即在轴承没有磨损情况下),表指示在红区,说明泵在反转,需调整动力线相序。
D、开泵后表无任何反应、电机又很小的嗡嗡声,说明泵动力线缺相,需检查电气线路。
E、开泵后表无任何反应、但出口压力、电流等一切正常,说明表已损坏,需更换新表。
F、开车后表指示偏大不在零位(在确认非轴承磨损情况下)将模组上U、V、W三根线与接线柱断开后,再开泵指标指示在零位,说明电压过高、有磁场或变频装置对表有干扰,可通过更换变频模组
蝶阀常见故障和处理方法?
一、蝶阀使用中一些常见故障:
1、蝶阀无法自动关闭,电控回路的故障。
2、蝶阀液压系统检修中常见缺陷是漏油,包括内外漏油。
3、摆动油缸的大小活塞电镀层崩缺。
二、出口蝶阀常见故障的处理方法:
(一)、首先要了解出口蝶阀的工作原理:
沙A电厂200MW和300MW发电机组的回圈水泵出口阀门均采用重锤式液控止回蝶阀,它能与回圈水泵联动控制,蝶阀预开15°后可启动回圈水泵。开启后液压驱动系统自动保压,使重锤不下降。即使液压系统中有轻微漏油,使重锤下跌超过15°,电控系统也可联动油泵电机补油,保持油压。当回圈水泵关闭时,蝶阀联动关闭,分快关和慢关二阶段关闭,作用是可防止关阀时管路中水锤压力上升的冲击,缓冲保护管路,防止回圈水泵倒转。由于此类蝶阀可起到止回和截止的功能,能有效防止水锤,并且有泵阀联动,安全可靠等诸多优点,自从投产以来,在水、火力发电厂、公共供排水、化工冶金等行业中得到广泛的应用。近年来逐步发展有防海水型、防泥砂型、锁定型、无重锤型、蝶板三维偏心结构等形式和结构。但基本控制方式都是采用电液控制,其液压系统的特点是原理简单、可靠、检修方便。蝶阀 法兰蝶阀 对夹蝶阀 不锈钢蝶阀 硬密封蝶阀
工作原理
1、以KD741X-6V型蝶阀为例
液压原理简述
1)、开阀
启动油泵电机,油泵运转,液压油经滤网、油泵、调速阀、单向阀及高压胶管进入摆动油缸,推动油缸中大小活塞称动,没通过调速阀的多余液压油经溢流阀流回油箱。油缸活塞带动与之相连线的连线头使重锤升起,并同时带动阀轴使蝶板转动,实现开启。调节调速阀可得到予定的开启速度。此运动过程,手动阀为开状态,电磁阀为关位置,旁路手动阀为关的位置。
2)、关阀
电磁阀通电,电磁阀开启,在重锤的作用下,油缸内的压力油经快、慢关角度调节阀、快关调节阀,慢关调节阀及高压胶管、常开的手动阀和电磁阀流入油箱,利用重锤的势能带动蝶板关闭实现关阀。关阀程式中的快关,慢关时间和快、慢关角度由油缸的快关调节阀,慢关调节阀和快、慢关角度调节阀来调定。
3)、手动开关阀
关闭电磁阀前手动阀,摆动手摇泵,可徐徐开启蝶阀。而将旁路(手动)阀开启,油缸中油流经旁路阀回油箱,从而使蝶板在重锤的势能作用下关闭。弹簧安全阀 浙江安全阀 上海安全阀 不锈钢安全阀 美标安全阀 德标安全阀 安全阀超市
4)、全开后自动保压
为保证油缸长期工作时,压力不低于所需的油压力,使重锤不至于因油压力过低而下降,因此在液压系统油路中并联一弹簧式蓄能器。一般情况下,蓄能器的压油压力为额定值,当系统微量内漏时,蓄能器可向系统补油。当液压系统泄漏引起蝶阀关闭,蝶板关至75°时,电控系统自动接通电源使油泵再启动开启蝶板至90°。当系统出现严重泄漏,油泵输出油不能维持蝶阀开启,蝶板关至15°时,则联动停回圈水泵电源。避免损坏水泵和管路。
(二)、检修中常见缺陷的处理方法:
1、蝶阀无法自动关闭的处理方法:
旁路(卸油)阀和手动阀这两个阀门的外形和结构形式是一样的。当蝶阀正常执行时旁路卸油阀应在常关状态,电磁阀前的手动阀应在常开状态。如果误把电磁阀前手动阀关闭了,当蝶阀需关闭时,油压油就无法通过电磁阀卸油了,蝶阀也就无法自动关闭。
特别需指出的是电磁阀有正作用型和反作用型两种型式,正作用型电磁阀是指在蝶阀开启情况下,电磁阀常带电,当电磁阀失电时,蝶阀关闭。反作用型电磁阀是指在蝶阀开启时,电磁阀不带电,当电磁阀得电时,蝶阀关闭。后者更适合电厂采用,因为电厂有稳定的控制电源,电磁阀可保证随时得电开启,也能避免因电源误断电引起蝶阀关闭联动跳泵。
2、蝶阀液压系统检修中常见缺陷是漏油,包括内外漏油。
1)、造成外漏的原因主要是密封部件损坏,近年来由于更换了耐油橡胶密封材料,并且加强大、小修的定期维护,执行中外漏现象基本杜绝。
2)、造成内漏的主要原因是各液压控制阀的密封口(线密封)被划伤所致,而造成密封口划伤主要是由于系统中有杂质,积聚在密封口上被挤压后使其留下痕迹,破坏密封线,从而影响密封性。
3)、内漏造成的故障现象是多种的,但是引起故障现象的原因并不仅只是内漏,还有可能是电控回路的故障。
3、检修中常见缺陷的处理方法:

1)、电控回路的故障这往往需要与电修人员一起检查判别。分析判别内漏故障点的方法主要是根据原理图,采用逐个分析判别排除法进行。我们总结出“故障分析树图”的方法,把缺陷现象从易到难地排查,判定原因直到最后排除故障的整个过程用树图的形式一一列出,可清晰、方便地判定故障点。
2)、避免内漏的一个行之有效的方法是定期清理油箱,过滤压力油,注油时经过严格过滤,检修中避免使用带棉纱头的碎布,这些措施都能保证油的清洁度。目前各蝶阀油系统维护周期是一年,基本能满足装置健康执行。
3)、摆动油缸的大小活塞电镀层崩缺是近年检修中发现的另一个主要缺陷,估计原因是使用时间长镀层不牢固疲劳脱落。镀硬铬层脱落后粗糙的活塞壁体,将会加剧密封圈的磨损,严重时引起内漏。处理方法是退去镀铬层,重新镀硬铬,重新镀层厚度可在0.10~0.15mm之间。重新电镀处理有退铬,补焊,校中心,粗、精启等工艺。
4)、蝶阀液压系统检修后阀门开启不了的缺陷,多数原因是由于调速阀或溢油阀行程错位所致。事实上调速阀(调节油流量)、溢油阀(调节系统最高压力)等液压控制阀在一次调定后就无需再调整了。
5)、液压系统外漏也曾是一个主要故障点。主要表征是摆动油缸和各调节阀渗漏油,发生严重爆漏时,系统油压将无法维持而引起跳泵。通过开展QC活动,统计回圈水泵出口蝶阀故障次数,利用柏拉图80~20%原则分析主要故障发生在液压系统外漏,并用鱼骨图分析外漏的主要原因是液压系统密封圈材质选用不当老化和缺乏维护二大因素。在检修中将容易老化的聚氨脂材质的密封件更换为耐油丁腈橡胶材质,并加强维护,坚持每个大修期更换全部密封件,每个小修期进行换油滤油和检查除错。
经过PDCA回圈活动,某厂12台回圈水泵出口蝶阀的机械故障率从1.25次/台年降低至0.2次/台年,大大提高回圈水泵出口蝶阀的执行可靠性和健康水平。
三、总结:
只有熟悉了解回圈水泵出口阀及蝶阀装置的每一处细节,及时彻底地进行维护和严格除错,才能确保装置执行的安全性和可靠性,保证装置的健康有序执行。