您现在的位置是:首页 >

欧几里得 欧几里德除法详细资料大全

火烧 2023-04-18 15:08:19 1103
欧几里德除法详细资料大全 欧几里德算法又称辗转相除法,用于计算两个整数a, 的最大公约数。其计算原理依赖于下面的定理:定理:gcd a, = gcd ,a mod 证明:a可以表示成a = k + r

欧几里德除法详细资料大全  

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:

定理:gcd(a,b) = gcd(b,a mod b)

证明:a可以表示成a = kb + r,则r = a mod b

假设d是a,b的一个公约数,则有

d|a, d|b,而r = a - kb,因此d|r

因此d是(b,a mod b)的公约数

假设d 是(b,a mod b)的公约数,则

d | b , d |r ,但是a = kb +r

欧几里得 欧几里德除法详细资料大全

因此d也是(a,b)的公约数

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

基本介绍

中文名:欧几里德除法用途:计算两个整数ab的最大公约数定理:gcd(a,b) = gcd(b,a mod b)又称:辗转相除法 欧几里德算法,步骤,

欧几里德算法

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a = kb +r 因此d也是(a,b)的公约数 因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

步骤

欧几里德算法(辗转相除法)求两个数的最大公约数的步骤如下: 先用小的一个数除大的一个数,得第一个余数; 再用第一个余数除小的一个数,得第二个余数; 又用第二个余数除第一个余数,得第三个余数; 这样逐次用后一个数去除前一个余数,直到余数是0为止。那么,最后一个除数就是所求的最大公约数(如果最后的除数是1,那么原来的两个数是互质数)。 例如求1515和600的最大公约数, 第一次:用600除1515,商2余315; 第二次:用315除600,商1余285; 第三次:用285除315,商1余30; 第四次:用30除285,商9余15; 第五次:用15除30,商2余0。 1515和600的最大公约数是15  
永远跟党走
  • 如果你觉得本站很棒,可以通过扫码支付打赏哦!

    • 微信收款码
    • 支付宝收款码