您现在的位置是:首页 >

吉林大学博导 吉林大学数学学院刘长春导师简介

火烧 2022-05-31 06:49:57 1112
吉林大学数学学院刘长春导师简介 一、自然情况姓 名: 刘长春籍 贯: 吉林省镇赉县出生年月: 1971年9月电子信箱: liucc@jlu.edu.c 二、大学以上学历1990.09―1994.06

吉林大学数学学院刘长春导师简介  

一、自然情况

姓 名: 刘长春

籍 贯: 吉林省镇赉县

出生年月: 1971年9月

电子信箱: liucc@jlu.edu.cn

二、大学以上学历

1990.09―1994.06 吉林大学数学系 本科生

1994.09―1997.06 吉林大学数学所 硕士研究生

1997.09―2001.06 吉林大学数学所 博士研究生

三、学术任职

1997.07―1999.09 吉林大学数学学院 助教

1999.10―2004.12 吉林大学数学学院 讲师

2002.09―2004.06 南京师范大学数学系 博士后

2004.12―2008.9 吉林大学数学学院 副教授

2008.9 ―现在 吉林大学数学学院 教授

四、主要学术贡献

主要从事偏微分方程理论及其应用方面的研究。主持和参加了多项科研项目,于国内外学术刊物发表论文20多篇。指导硕士研究生3人。

1. 科研项目

1)《一类非线性扩散方程》,自然科学基金天元青年基金(10526022),3万,2006.01-2006.12,负责人;

2)《粘性Cahn-Hilliard方程》,吉林大学青年基金,2万,2002.01-2003.12,负责人;

3) 《具奇异性的非线性扩散方程》刘长春简介,教育部博士点基金,5万刘长春简介,2004-2006,第3参加者;

3. 发表论文目录

[1] Yin Jingxue and Liu Changchun, Regularity of solutions of the Cahn-Hilliard equation with concentration dependent mobility, Nonlinear Analysis, TMA, 45(5)(2001), 543-554.

[2] Liu Changchun and Yin Jingxue, Finite Speed of Propagation of perturbations for the Cahn-Hilliard equation with degengrate mobility, Journal of Partial Differential Equations, 14(3)(2001), 251-264.

[3] Yin Jingxue and Liu Changchun, Radial symmetric solutions of the Cahn-Hilliard equation with degenerate mobility, Electronic Journal of Qualitative Theory of Differential Equations, 2 (2001),1-14.

[4] Yin Jingxue and Liu Changchun , Viscous Cahn-Hilliard equation with concentration dependent mobility, Northeastern Math. J., 18 (3) (2002), 266-272.

[5] Liu Changchun and Yin Jingxue, Convective diffusive Cahn-Hilliard equation with

concentration dependent mobility, Northeastern Math. J., 19 (1) (2003), 86-94.

[6] Liu Changchun , Cahn-Hilliard equation with terms of lower order and non-constant mobility, Electronic Journal of Qualitative Theory of Differential Equations, 10 (2003),1-9.

[7] Liu Changchun, Weak solutions for a viscous p-Laplacian equation, Electronic Journal of Differential Equations, 63 (2003), 1-11.

[8] Gao Hongjun and Liu Changchun , Instability of traveling waves of the convective-diffusive Cahn-Hilliard equation, Chaos, Solitons and Fractals, 20(2)(2004), 253-258.

[9] Liu Changchun , Yin Jingxue and Gao Hongjun, A generalized thin film equation, Chin. Ann. Math., 25 B(3)(2004), 347-358.

[10] Liu Changchun, Some properties of solutions of the pseudo-parabolic equation, Lobachevskii Journal of Mathematics, 15(2004), 3-10.

[11] Liu Changchun , Instability of traveling waves for a generalized diffusion model in population problems, Electronic Journal of Qualitative Theory of Differential Equations, 18 (2004), 1-10.

[12] Liu Changchun , Some properties of solutions for the generalized thin film equation, Bol. Aso. Mat. Ven., 12(1)(2005).43-52.

[13] Liu Changchun , On the convective Cahn-Hilliard equation, Bulletin of the Polish Academy of Sciences, Mathematics, 53(3)(2005), 299-314.

吉林大学博导 吉林大学数学学院刘长春导师简介

[14] Liu Changchun , Qi Yuanwei and Yin Jingxue, Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility, Acta Mathematica Sinica, English Series, 22(4)(2006), 1139-1150.

[15] Liu Changchun and Guo Jinyong, Weak solutions for a fourth order degenerate parabolic equation, Bulletin of the Polish Academy of Sciences, Mathematics, 54(1)(2006), 27-39.

  
永远跟党走
  • 如果你觉得本站很棒,可以通过扫码支付打赏哦!

    • 微信收款码
    • 支付宝收款码