您现在的位置是:首页 >

6年级下册应用题100道有答案 六年级下册数学应用题及答案

火烧 2022-05-21 16:47:42 1142
六年级下册数学应用题及答案 六年级下册数学应用题及答案小学数学应用题精选及解答1、小华读一本120页的故事书,第1天读了全书的1/3. 1 第1天读了多少页?(2)剩下多少页没有读?解答:120×1/

六年级下册数学应用题及答案  

六年级下册数学应用题及答案

小学数学应用题精选及解答
1、小华读一本120页的故事书,第1天读了全书的1/3.(1)第1天读了多少页?(2)剩下多少页没有读?
解答:120×1/3=40(页) 120—40=80(页)或120×(1—1/3)=80(页)
2、小华读一本120页的故事书,第1天读了全书的1/3,第二天读了全书的1/4。
(1)第1天读了多少页?(2)第2天读了多少页?(3)还剩多少页没有读?
解答:(1) 120×1/3=40(页) (2) 120×1/4=30(页)
(3) 120—40—30=50(页)或120×(1—1/3—1/4)=50(页)
3、小华读一本120页的故事书,第1天读了全书的1/3,第二天读了余下的1/4,第2天读了多少页?
120×1/3=40(页) 120—40=80(页) 80×1/4=20(页)
或(1—1/3)×1/4=1/6 120×1/6=20 (页)
4、小华读一本故事书,第1天读了全书的1/3,第二天读了余下的1/4,还剩6页没有读。
(1)这本故事书共有多少页?
解答:(1—1/3)×1/4=1/6 6÷(1—1/3—1/6)=12(页)
(2)第1天比第2天多读了多少页?
解答:12×(1/3—1/6)=2(页)
5、小华读一本故事书,第1天读了全书的1/3,第二天读了余下的1/4,第1天比第2天多读20页。
(1)这本故事书共有多少页?
解答:(1—1/3)×1/4=1/6 20÷(1/3—1/6)=120(页)
(2)第1天读的页数是第2天的多少倍?
解答:1/3÷1/6=2(倍)
6、小华读一本故事书,第1天读了全书的1/3,第2天读20页,第3天读余下的1/4,还剩全书的3/8没有读。这本故事书共有多少页?
解答:
7、一辆摩托车以平均每小时20千米的速度行完了60千米的旅程。在回家的路上,它的平均速度是每小时30千米。问摩托车在整个来回的旅程中,平均速度是多少?
8、车站运来一批货物,第一天运走全部货物的1/3又20吨,第二天运走全部货物的1/4又30吨,这时车站还存货物30吨。这批物一共有多少吨?
9、车站有一批货物,第一天运走全部货物的1/3少20吨,第二天运走全部货物的1/4多10吨,这时车站还存货物70吨。这批货物一共有多少吨?
10、车站有一批货物,第一天运走全部货物1/3的少20吨,第二天运走全部货物的1/4少10吨,这时车站还存货物110吨。这批货物共有多少吨?
11、车站有一批货物,第一天运走全部货物的1/3多20吨,第二天运走全部货物的1/2少25吨,这时车站还存货物37吨,这批货物一共有多少吨?
12、车站有一批货物,第一次运走全部货物的1/3,第二次运走全部货物的3/4少16吨,这时正好全部运完,这批货物一共有多少吨?
13、车站有一批货物,第一天运走全部货物的2/3少28吨,第二天运走这批货物的3/4少52吨,正好运完。这批货物一共有多少吨?
14、化肥厂计划生产一批化肥,第一天生产了全部任务的1/6,第二天又生产了余下任务的1/4,第三天又生产了前两天生产后余下的1/5,结果还剩下50吨没有完成。问化肥厂计划生产化肥多少吨?
15、妈妈买回鸡蛋和鸭蛋共21个,其中鸭蛋占3/7;后来,妈妈又买回几个鸭蛋,这时鸭蛋占总蛋数的7/13,后来妈妈又买回来几个鸭蛋?
16、有一堆砖,搬走后1/4又运来360块,这时这堆砖比原来还多了20%,原来这堆砖有多少块?
17、师徒俩合做零件200个,师傅做的25%比徒弟做的1/5多14个,徒弟做了多少个零件?
18、有一条山路,一辆汽车上山时每小时行30千米,从原路返回下山时每小时行50千米,求汽车上山、下山的平均速度是多少?
19、师徒二人加工一批零件,师傅加工的零件比总数的1/2还多25个,徒弟加工的零件数是师傅的1/3,这批零件共有多少个?
20、甲、乙、丙三个运输队共同运送一批货物,甲队运了这批货物的1/4,乙队运了一部分,丙队运了这批货物的1/3,正好全部运完。已知甲队比丙队少运了10吨,求乙队运了多少吨?
21、甲、乙两人去书店买书,共带去54元,甲用去自己钱的75%,乙用去自己钱的4/5,两人剩下的钱数正好相等。甲、乙两人原来各带去多少元钱?
22、甲、乙两队合修一条长2500米的公路,甲队完成所分任务的2/3,乙队完成所分任务的3/4又50米,还剩700米没有修。两队所分任务各是多少米?
23、果园里种著苹果树和梨树。苹果树的面积比总面积的1/2多4公顷,梨树的面积是苹果树的1/2。求两种树各种了多少公顷?
24、中夏化工总厂有两堆煤,共重2268千克,取出甲堆2/5的和乙堆的1/4共重708千克。问甲、乙两堆原有煤各是多少千克?
25、甲、乙两个工人共同加工140个零件。甲做自己任务的80%,乙做自己任务的75%,这时甲、乙共剩下32个零件未完成。问甲、乙两个工人原来各需做多少个零件?
26、师徒两人共加工540个零件,师傅加工了自己所分任务的3/4,徒弟加工了所分任务的80%,两人剩下的任务正好相等。求师徒两人各分得多少个零件的加工任务?
27、学校买回两种图书共220本,取出甲种图书的1/4和乙种图书的1/5共50本借给五年级(1)班同学阅读,问甲、乙两种图书各买回来多少本?
28、学校买来一批图书,其中文艺书占4/9,数学书占余下的18/25,已知数学书比文艺书少20本。这批图书共有多少本?

六年级下册数学应用题,有答案

1. 农具厂要生产20640件小农具,120天完成了一半,平均每天生产多少件?
2. 一个制鞋厂制出男鞋3860双, 是制出的女鞋的2倍, 制出女鞋多少双?
3. 修一条水渠,已经修了840米,还有120米没修,修的是没修的几倍?
4. 38个民兵练习打靶,一共打中1026环,平均每个民兵打中多少环?
5. 南京到济南的铁路长是540千米,一列火车从南京开出,9小时到达,这列火车平均每小时行多少千米
6. 饲养组养了64只白兔,是灰兔的4倍,养了多少只灰兔?

六年级下册数学应用题卡34页至36页答案

:1010jiajiao./daan/bookid_64029.
如果版本不同,请自行搜寻(搜寻练习册)
如果帮助了你,请及时点选【采纳为满意回答】按钮

六年级下册数学应用题

1. 一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?
2. 某厂买进甲、乙两种材料共56吨,用去9860元。若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?
3. 某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?
2. 有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?
3. 种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。3种包装的饮料每瓶各多少元?
4. 某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。
5. 一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.
6. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.
7. 购买甲种图书10本和乙种图书16本共付款410元,甲种图书比乙种图书每本贵15元,问甲、乙两种图书每本各买多少元?
8. 甲、乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即返身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。
9. 、某工程车从仓库装上水泥电线杆运送到离仓库恰为1000米处的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆。已知工程车每次至多只能运送电线杆4根,要求完成运送18根的任务,并返回仓库。若工程车行驶每千米耗油m升(耗油量只考虑与行驶的路程有关),每升汽油n元,求完成此项任务最低的耗油费用。
10. 某家庭前年结余5000元,去年结余9500元,已知去年的收入比前年增加了15%,而支出比前年减少了10%,这个家庭去年的收入和支出各是多少?
11 .某人装修房屋,原预算25000元。装修时因材料费下降了20%,工资涨了10%,实际用去21500元。求原来材料费及工资各是多少元?
12、某单位甲、乙两人,去年共分得现金9000元,今年共分得现金12700元 . 已知今年分得的现金,甲增加50%,乙增加30% . 两人今年分得的现金各是多少元?
13..若干学生住宿,若每间住4人则余20人,若每间住8人,则有一间不空也不满,问宿舍几间,学生多少人?
14. .某运输公司有大小两种货车,2辆大车和3辆小车可运货15.5吨,5辆大车和6 辆小车可运货35吨,客户王某有货52吨,要求一次性用数量相等的大小货车运出,问需用大、小货车各多少辆?
15、通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?
16。现计划将一种货物1240T和一种货物880T用一列货车运往某地,已知这列货车挂有A、B两种规格的车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元。
1)运这批货物的总费用为Y万元,这列货车挂A型车厢X节,试写出X与Y的关系式。
2)如果每节A型车厢最多可装甲种货物35T或乙种货物15T,每节B型车厢最多可装甲种货物25T或乙种货物35T,装货时按此要求安排A、B两种车厢的节数,那么共有几种安排车厢的方案?
3)在上述方案中哪种方案费用最少?最少运费多少万元?
17.某同学上学时步行,放学乘车,往返全程共需1.5h;若他上学放学都乘车,则只需0.5h,若都步行,则往返全程共需多少h?
18.一列快车长306米,一列慢车长344米,两车相向而行,从相遇到离开工序13秒.若同向而行,快车追慢车需65秒,问快慢车的速度是多少?
19。从甲地到乙地全程是3.3KM,一段上坡,一段平路,一段下坡.如果保持上坡每小时行3KM,平路每小时行4KM,下坡每小时行5KM,那么,从甲地到乙地需行51分,从乙地到甲地需行53.4分.求从甲地到乙地上坡平路下坡的路程各是多少.
20小明和小丽出生于1998年12月,他们的出生日不在一天,但都是星期五,且小明比小丽出生早,两人出生日期之和是22,那么小丽的出生日期是多少号?
21一张方桌由1个桌面,4条腿组成.如果1立方米木料可以做方桌的桌面5个或做桌腿30条,现在有25立方米木料,那么用多少木料做桌面,多少木料做桌腿,做出的桌面和桌腿恰好能配成方桌?能配成多少张方桌?
22。一组同学去种树,如果每人种4棵,还剩下3棵树苗:如果每人种5棵,则少5棵,求人数与树苗数。
23.地面上空h(M)处的气温S有以下关系:t=-kh+s,现用气象气球侧地200M处的气温t为8.4℃,离地面500M处气温t为6℃。求K。s的值并计算离地面1500M的气温
24.马4匹,牛六头,共价48两,马3匹,牛五头,共价38两。求马,牛单价
25.某市居民每月交自来水费包括两个专案:每月使用水费(立方米)和同体积的污水处理费,其中污水处理费的单价(元/立方米)是自来水的1/4。
小华五月份用了自来水21立方米,交了42月,求水费和污水处理费每立方米各多少
5.(1)200年全年固定电话使用者比移动使用者多百分之71.40。2002年全国固定使用者比行动电话使用者多百分之3.64。
(2)移动使用者2002年比2000年增长了百分之144.4。固定使用者从199年到2000年的实际增长数比从2001到2002年实际增长数多206万户。
年份 /1999年/2000年/2001年/2002年
固定电话使用者(W户)/10872/ 求 /18037 / 求
行动电话使用者(W户)/4330 / 求 / 14522/ 求
合计(W户) /15202/求 /32559/求
26.在地表面上方10千米高空有一条高速风带,假设有两架速度相同的飞机在这个风带飞行,其中一飞机从A地到B地,花了6.5小时:同时另一飞机从B地到A地用了5.2小时,已经知道A-B的距离是4000千米 求飞机和风平均的速度各是多少(精确到1千米/时)
27.某工程由甲、已两队合做6天完成,厂家需要付甲、已两队共8700元;已、丙两队合做10天完成,厂家需要支付已、丙两队共9500元;甲、丙两队合做5天完成全部工程的2/3,厂家需付甲、丙两队共5500元。现在厂家要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?!
28.一列快车和一列慢车的长度分别为180米和225米,若同向行驶,从快车追及慢车到全部超过要81秒,如果快、慢车速度分别为X米/秒和Y米/秒,那么表示其等量关系的方程是
29.学生去春游,如果租8辆车,那么20名学生没座位;如果租9辆车,那么有一辆车空20个座位,已知车子的规格一样,求每车有多少个座位,学生共几名?
30.制造某种零件,可用机器也可用手工,若1人用机器,3人用手工,每兲可制造65个零件;若2人用机器,2人用手工,每兲可制造90个零件,问3人用机器,1人用手工每兲可制造多少个零件.
31.某中学初二学生去烈士陵园扫墓,若每辆汽车坐35个学生,则有16个学生没有座位;若每辆汽车座52个学生,则空出一辆汽车,问共有几辆汽车呵多少学生?
32.运往某地两批货物,第一批360吨,用6节火车皮在加上15两汽车正好装完,求每节火车皮和每两汽车平均个装多少吨?
33.家俱厂生产一种方桌设计时,1立方米木材可做60个桌面或360条腿,现有20立方米木材,怎样分配桌面和桌腿,使得所用的木材恰好配套,并指出可生产多少张方桌?(一张方桌有一个桌面呵四条腿)
34有一架飞机,来往于甲城与乙城之间,由于受风速的影响,来时为4小时,回去为5小时,已知甲,乙两城之间距离为1000千米,那么风速为多少?
35两列火车分别在平行的铁轨上行驶,快车长168米,慢车长184米,如相向而行,从相遇到离开要4秒, 如同向而行 ,从快车追上慢车到离开需要16秒 ,求两车速度
36.有1角,5角,1元硬币各10枚,从中取出15枚,这取出的15枚加起来7元。问1角,5角,1元硬币各多少枚?
37植树节这一天,某学生去植树,如果没人植树6棵,只能完成原计划植树任务的3/4,如果每人提高植树率50%,那么可比原计划多植树40棵,求参加植树的人数及原计划植树的棵树
38抗洪救灾小组A地段现有28人,B地段又15人,现在又调来29人,分配倒A、B两个地段,要求分配后,A地段人数时B地段人数的2倍,则调往A、B两个地段的人数分别是
39A、B两地相距120km,甲从A地出发去B地,同时乙从B地出发去A地,2h后两人在途中相遇,相遇后,甲、乙继续前进,当甲到达B地是,乙到达A、B两地重点,求甲、乙二人的速度
40甲、乙两件衣服的成本共500元,商店老板为获取利润军顶讲甲服装按60%的利润定价,讲乙服装按40%的利润定价,在实际出售时,应顺客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本个多少元
41.要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张白卡纸可以做侧面2个,或者做底面3个.或者套裁出1个侧面和1个底面,如果1个侧面和2个底面可以做成一个包装盒,那么该如何分法,能充分利用资源并使做成的侧面和底面正好配套?
42.某服装厂加工一批运动服,每15米布料能裁上衣10件或裁裤子13条。现有布料345米,为了使上衣和裤子配套,裁上衣和裤子所用的布料应各用多少米?
43.两列火车从相距910千米的甲、乙两地同时相向出发,10小时后相遇;如果第一列火车比第二列火车先出发4小时20分,则在第二列火车出发8小时后相遇。问两列火车每小时各行多少千米?
44.双容服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。
(1)求A、B两种型号的服装每件分别为多少元?
(2)若销售1件A种型号服装可获利18元,销售1件B种型号服装可获利30元,根据市场需求,服装店老板决定,购进A种型号服装的数量要比购进B种型号服装数量的2倍还多4件,且A种型号服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元。问:有几种进货方案?如何进货?
45某次知识竞赛共有20道选择题,对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分,请问:至少要答对几道题,总得分才不少于70分?
46.一家商店因换季准备将某种服装打折销售,每件服装如果按标价的五折出售将亏20元,而按标价的八折出售将赚40元,问:
(1)每件服装的标价是多少?
(2)每件服装的成本是多少?
47.有两个长方形,第一个长方形的长与宽之比为5:4,第二个长方形的长与宽之比为3:2,第一个长方形的周长比第二个长方形的周长大112,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积
48.有一些苹果箱,若每只装苹果25千克,则余40千克无处装;若每只装30千克,则余20只空箱,这些苹果箱有多少只?
49.甲、乙两人分别从相距24千米的两地同时骑车出发,如果相向而行,1小时相遇;如果同向而行,甲6小时追上乙,求甲、乙两人的速度。
50.A,B两地相距36KM,小明从A地骑脚踏车到B地,小丽从B地骑脚踏车到A地,两人同时出发相向而行,经过1H后两人相遇;再过0.5H,小明余下的路程是小丽余下的路程的2倍。小明和小丽骑车的速度各是多少

六年级下册数学应用题天天练数与代数答案

1。两地间的公路长480千米,两辆汽车同时从这两地相对出发,甲车的速度是乙车的2倍,4小时相遇。两车每小时各行多少千米?(用方程解)2。小明和小刚共有128张邮票,小明的邮票比小刚的2倍多8张。两人各有邮票多少张?(用方程解)3。学校田径队人数是篮球队的3倍,篮球队比田径队少22人。篮球队和田径队各有多少人?(用方程解)4。一个长方形的周长是30厘米,长是宽的2倍。求这个长方形的面积。(用方程解)5。一根电线长180米,把它分成3段,第一段比第二段长20米,第三段是第一段的2倍。三段电线各长多少米?(用方程解)

六年级下册数学较难应用题 带答案

典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。 (1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。 差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。 数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。 例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)
(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。 根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。 一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。” 两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。” 正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。 反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。 解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一) 总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天? 分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例演算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米? 分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。 解题规律:(和+差)÷2 = 大数 大数-差=小数 (和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人? 分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)
(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。 解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。 列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)
(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。 解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)„乙绳剩下的长度, 17 × 3=51 (米)„甲绳剩下的长度, 29-17=12 (米)„剪去的长度。
(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。 解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间 同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。 同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)
(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种型别,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。 船速:船在静水中航行的速度。 水速:水流动的速度。
顺水速度:船顺流航行的速度。 逆水速度:船逆流航行的速度。 顺速=船速+水速 逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2 流水速度=(顺流速度逆流速度)÷2 路程=顺流速度× 顺流航行所需时间 路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米? 分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。
(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推汇出原数。 根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推汇出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。 例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人? 分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人)
三班原有人数列式为 168 ÷ 4-3+6=45 (人)。
(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。 解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1) 沿周长植树
棵树=总路程÷株距 株距=总路程÷棵树 总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

六年级下册数学应用题难题u

一堆桔子,装满3筐另加18千克的重量正好是这堆桔子重量的 ,剩下的刚好装满8筐。这堆桔子一共有多少千克?

青岛版六年级下册数学应用题

去问同学吧

七年级下册数学应用题及答案

答案看多了,抄袭可能会养成习惯 会对以后的学习产生不良的影响,在网上是问不到答案的哈现在就养成勤于思考的习惯 好好学习,即使自己答案错了至少能加深印象

6年级下册应用题100道有答案 六年级下册数学应用题及答案
  
永远跟党走
  • 如果你觉得本站很棒,可以通过扫码支付打赏哦!

    • 微信收款码
    • 支付宝收款码