您现在的位置是:首页 >

一元一次方程应用题及答案 七年级数学一元一次方程中最难的题是什么(一般人做不

火烧 2021-10-08 22:06:13 1115
七年级数学一元一次方程中最难的题是什么(一般人做不 七年级数学一元一次方程中最难的题是什么(一般人做不初一一元一次方程单独考的题目难不到哪里去,顶多复杂一点,主要是几类应用题要掌握.给你几道不算难的题

七年级数学一元一次方程中最难的题是什么(一般人做不  

七年级数学一元一次方程中最难的题是什么(一般人做不

初一一元一次方程单独考的题目难不到哪里去,顶多复杂一点,主要是几类应用题要掌握.给你几道不算难的题吧,以下都摘自我初一错题本,没碰到过所谓最难的题

<概念题>方程k·(x^4-k) =x+4(k是不为4的常数)是关于x的一元一次方程.(1)试确定k的值;(2)解此一元一次方程.[点评:此题涉及分类讨论;答案:k=3或0,x=2或-4]

<行程问题>一队学生从学校步行前往参观工厂,速度为5km/h,走了1h后,一学生回学校去取东西,他以7.5km/h的速度回学校,取东西后(取东西时间不计)立即以同样的速度追赶队伍,结果在距离工厂2.5km处追上了队伍.求学校到工厂的距离.[答案:27.5km]

一元一次方程应用题及答案 七年级数学一元一次方程中最难的题是什么(一般人做不

<行程问题>李叔叔从家里骑摩托车到火车站,若每小时行驶30km,那么比火车出发要早15min,若每小时行驶18km,那么比火车出发时间完15min.他现在打算在火车出发时间前10min到达,那么他骑摩托车的速度为多少?[答案:27km/h]

<利润问题>某商品若按标价的八折出售,可获利20%,若按标价出售,则可获利多少?[点评及答案:可设进价为1,获利为x,则标价为(1+x),易得答案为50%]

<利润问题>某公司向银行贷款40万元,用来开发某种产品.已知该贷款的年利率为15%,每个产品的成本是2.3元,售价4元,应纳税款为销售额的10%,如果每年生产该种产品20万个,并把所得利润用来还贷款,问几年后才能一次性还清?[答案:2年]

<利润问题>某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月底又可获利10%;如果月末出售可获利30%,但要分仓储费700元.请问根据商场的基金状况,如何购销才能获利最多?[答案及点评:先计算出平衡点即当月初=月末时,投入资金20000元,获利相同;再分类讨论可得出剩余答案:当月初>月末时,月初出售获利最多;当月初<月末时,月末出售获利最多]

<时钟问题>XX地区志愿者小方早上8点多准备去为灾民服务,临出门他看了一下钟,时针与分针正好重合,下午2点多他回家,一进家门看见钟的时针和分针方向正好相反,成一直线.问:小方几点去为灾民服务,几点钟回家,共用了多少时间?[点评:画图梳理资讯得出数量关系;答案:8点(480/11)分离家,下午2点(480/11)分回家,共用6小时]

<工作效率问题>某工作,甲单独完成需要4天,乙单独完成需要8天,现在甲先工作1天后和乙共同完成其余工作,则甲一共做了几天?[答案:3天]

<解法题>小明在解方程[(2x-1)/5]+1=(x+a)/2 时,因在去分母时,将方程左边的"1"漏乘,因此解得方程的解为x=4.求a的值,以及正确方程的解[点评及答案:此类题较为简单,步骤为:将错就错-错解代入算a-把a代入原方程-解出正确解,可得答案为a=-1,x=13]

人教版七年级上数学一元一次方程中最难的题

一元一次方程练习题
基本题型:
一、选择题:
1、下列各式中是一元一次方程的是( )
A. 5a 4b B.4x 9x
C. 5x2 9y2 D. 7a-4b
2、方程3x-2=-5(x-2)的解是( )
A.-1.5 B. 1.5C. 1 D. -1
3、若关于 的方程 的解满足方程 ,则 的值为( )
A. 10 B. 8 C. D.
4、下列根据等式的性质正确的是( )
A. 由 ,得 B. 由 ,得
C. 由 ,得 D. 由 ,得
5、解方程 时,去分母后,正确结果是( )
A. B.
C. C.
6 、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )
A. 0.81a 元 B. 1.21a元 C. 1.1a元 D.0.1a 元
8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )
A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元
9、下列方程中,是一元一次方程的是( )
(A) (B) (C) (D)
10、方程 的解是( )
(A) (B) (C) (D)
11、已知等式 ,则下列等式中不一定成立的是( )
(A) (B)
(C) (D)
12、方程 的解是 ,则 等于( )
(A) (B) (C) (D)
13、解方程 ,去分母,得( )
(A) (B)
(C) (D)
14、下列方程变形中,正确的是( )
(A)方程 ,移项,得
(B)方程 ,去括号,得
(C)方程 ,未知数系数化为1,得
(D)方程 化成
15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.
(A)3年后; (B)3年前; (C)9年后; (D)不可能.
16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为 ,则列出的方程正确的是( )
(A) (B)
(C) (D)
17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是 元,那么种植草皮至少需用( )
(A) 元; (B) 元; (C) 元; (D) 元.
一年期 二年期 三年期
2.25 2.43 2.70
18、银行教育储蓄的年利率如右下表:
小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )
(A)直接存一个3年期;
(B)先存一个1年期的,1年后将利息和自动转存一个2年期;
(C)先存一个1年期的,1年后将利息和自动转存两个1年期;
(D)先存一个2年期的,2年后将利息和自动转存一个1年期.
二. 填空题:
1、 ,则 ________.
2、已知 ,则 __________.
3、关于 的方程 的解是3,则 的值为________________.
4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________________.
5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.
6、某数的3倍比它的一半大2,若设某数为 ,则列方程为____.
7、当 ___时,代数式 与 的值互为相反数.
8、在公式 中,已知 ,则 ___.
日 一 二 三 四 五 六
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数
,请用一个等式表示 之间的关系______________.
10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.
11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.
12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).
13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.
14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元
15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________.
三、解方程:
1、 2、
3、 4、
5、 6、
7、 8、
9、已知 是方程 的根,求代数式 的值.
四、列方程解应用题:
1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?
2、期中考查,资讯科技课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?
3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由.
4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?
5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?
6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?
7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?
8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?
较高要求:
1、已知 ,那么代数式 的值。
2、(2001年江苏省无锡市中考题)某商场根据市场资讯,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).
(A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1%
3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?
4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成;
(1)你认为选择哪种方案获利最多,为什么?
(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?
5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?
(以上应用题,均无答案·)

一、判断题:
(1)判断下列方程是否是一元一次方程:
①-3x-6x=7;( ) ②( )
③5x 1-2x=3x-2; ( ) ④3y-4=2y 1. ( )
(2)判断下列方程的解法是否正确:
①解方程3y-4=y 3
解:3y-y=3 4,2y=7,y=;( )
②解方程:0.4x-3=0.1x 2
解:0.4x 0.1x=2-3;0.5x=-1,x=-2;( )
③解方程
解:5x 15-2x-2=10,3x=-3,x=-1;
④解方程
解:2x-4 5-5x=-1,-3x=-2,x=.( )
二、填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .
(2)关于x的方程ax=3的解是自然数,则整数a的值为: .
(3)方程5x-2(x-1)=17 的解是 .
(4)x=2是方程2x-3=m-的解,则m= .
(5)若-2x 1=0 是关于x的一元一次方程,则m= .
(6)当y= 时,代数式5y 6与3y-2互为相反数.
(7)当m= 时,方程的解为0.
(8)已知a≠0.则关于x的方程3ab-(a b)x=(a-b)x的解为 .
三.选择题:
(1)方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
(2)解方程(x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3(x-1)=12
B.去括号,得x-=3
C.两边同除以,得x-1=4
D.整理,得
(3)方程2-去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
(4)若代数式比大1,则x的值是( ).
A.13 B. C.8 D.
(5)x=1是方程( )的解.
A.-
B.
C.2{3[4(5x-1)-8]-2}=8
D.4x =6x
四、解下列方程:
(1)7(2x-1)-3(4x-1)=4(3x 2)-1;
(2)(5y 1) (1-y)= (9y 1) (1-3y);
(3)[()-4]=x 2;
(4)
(5)
(6)

一、判断题:
(1)判断下列方程是否是一元一次方程:
①-3x-6x2=7;( ) ② ( )
③5x 1-2x=3x-2; ( ) ④3y-4=2y 1. ( )
(2)判断下列方程的解法是否正确:
①解方程3y-4=y 3
解:3y-y=3 4,2y=7,y= ;( )
②解方程:0.4x-3=0.1x 2
解:0.4x 0.1x=2-3;0.5x=-1,x=-2;( )
③解方程
解:5x 15-2x-2=10,3x=-3,x=-1;
④解方程
解:2x-4 5-5x=-1,-3x=-2,x= .( )
二、填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .
(2)关于x的方程ax=3的解是自然数,则整数a的值为: .
(3)方程5x-2(x-1)=17 的解是 .
(4)x=2是方程2x-3=m- 的解,则m= .
(5)若-2x2-5m 1=0 是关于x的一元一次方程,则m= .
(6)当y= 时,代数式5y 6与3y-2互为相反数.
(7)当m= 时,方程 的解为0.
(8)已知a≠0.则关于x的方程3ab-(a b)x=(a-b)x的解为 .
三.选择题:
(1)方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
(2)解方程 ( x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3( x-1)=12
B.去括号,得x- =3
C.两边同除以 ,得 x-1=4
D.整理,得
(3)方程2- 去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
(4)若代数式 比 大1,则x的值是( ).
A.13 B. C.8 D.
(5)x=1是方程( )的解.
A.-
B.
C.2{3[4(5x-1)-8]-2}=8
D.4x =6x
四、解下列方程:
(1)7(2x-1)-3(4x-1)=4(3x 2)-1;
(2) (5y 1) (1-y)= (9y 1) (1-3y);
(3) [ ( )-4 ]=x 2;
20% (1-20%)(320-x)=320×40%
2(x-2) 2=x 1
2(x-2)-3(4x-1)=9(1-x)
11x 64-2x=100-9x
15-(8-5x)=7x (4-3x)
3(x-7)-2[9-4(2-x)]=22
3/2[2/3(1/4x-1)-2]-x=2
五、解答下列各题:
(1)x等于什么数时,代数式 的值相等?
(2)y等于什么数时,代数式 的值比代数式 的值少3?
(3)当m等于什么数时,代数式2m- 的值与代数式 的值的和等于5?
(4)解下列关于x的方程:
3x 6=9x 3;
(85 x)8=8;
78x 8(5 x)=34

七年级数学一元一次方程解应用题50题,

1.将一批工业最新动态资讯输入管理储存网路,甲独做需6小时,乙独做需4 小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时 才能完成工作?
2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长 方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求 圆柱形水桶的高(精确到0.1毫米,≈3.14) .
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比 过第一铁桥需多5秒, 又知第二铁桥的长度比第一铁桥长度的2倍短50米, 试求各铁桥的长.
5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种 三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这 16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工 一个甲种零件可获利16元, 每加工一个乙种零件可获利24元. 若此车间一 共获利1440元,•求这一天有几个工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千 瓦时,则超过部分按基本电价的70%收费. (1)某户八月份用电84千瓦时,共交电费30.72元,求a. (2)若该使用者九月份的平均电费为0.36元,则九月份共用电多少千瓦?• 应交电费是多少元?
8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3• 种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元. (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元, 请你研究一下商场的进货方案. (2) 若商场销售一台A种电视机可获利150元, 销售一台B种电视机可获 利200元, •销售一台C种电视机可获利250元, 在同时购进两种不同型号的 电视机方案中,为了使销售时获利最多,你选择哪种方案?

答案
1.解:设甲、乙一起做还需x小时才能完成工作. 根据题意,得 1 6 × 1 2 +( 1 6 + 1 4 )x=1 解这个方程,得x= 11 5 11 5 =2小时12分 答:甲、乙一起做还需2小时12分才能完成工作.
2.解:设x年后,兄的年龄是弟的年龄的2倍, 则x年后兄的年龄是15+x,弟的年龄是9+x. 由题意,得2×(9+x)=15+x 18+2x=15+x,2x-x=15-18 ∴x=-3 答:3年前兄的年龄是弟的年龄的2倍. (点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年 后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得  · ( 200 2 )2 x=300×300×80 x≈229.3 答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需 的时间为 600 x 分. 过完第二铁桥所需的时间为 250 600 x分. 依题意,可列出方程 600 x + 5 60 = 250 600 x 解方程x+50=2x-50 得x=100 ∴2x-50=2×100-50=150 答:第一铁桥长100米,第二铁桥长150米.
5.解:设这种三色冰淇淋中咖啡色配料为2x克, 那么红色和白色配料分别为3x克和5x克. 根据题意,得2x+3x+5x=50 解这个方程,得x=5 于是2x=10,3x=15,5x=25 答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:设这一天有x名工人加工甲种零件, 则这天加工甲种零件有5x个,乙种零件有4(16-x)个. 根据题意,得16×5x+24×4(16-x)=1440 解得x=6 答:这一天有6名工人加工甲种零件.
7.解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60 (2)设九月份共用电x千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90 所以0.36×90=32.40(元) 答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算, 设购A种电视机x台,则B种电视机y台. (1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25 50-x=25 ②当选购A,C两种电视机时,C种电视机购(50-x)台, 可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15 ③当购B,C两种电视机时,C种电视机为(50-y)台. 可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意 由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台. (2)若选择(1)中的方案①,可获利 150×25+250×15=8750(元) 若选择(1)中的方案②,可获利 150×35+250×15=9000(元) 9000>8750 故为了获利最多,选择第二种方案.
我只能帮你一点点只有8题,你看这办吧

勤学早七年级数学一元一次方程专题答案

请给出题目!

七年级数学一元一次方程试题的答案

七年级数学一元一次方程测试题
班级__________姓名___________学号______得分_______
一 .耐心填一填(10′×2=20′)
1. 方程 的解是__________,方程 的解是__________.
2. 若2a与1-a互为相反数,则a等于_____________.
3. 代数式 比3大5,则x的值为_________________.
4. 根据题意列出方程:
⑴设某数为x,某数的3倍与4的差等于10:______________.
⑵如右图,小红将一个正方形纸片剪去一个宽为4厘米的长条后,
再从剩下的长方形纸片上剪去一个宽为5厘米的长条,
且剪下的两个长条的面积相等.问这个正方形的边长应为多少
cm? 设正方形边长为xcm,则可列方程__________________.
5. 如果 -4=0是关于x的一元一次方程,那么a=
6. 当n=________时,单项式 与 是同类项.
7. 某品牌的电视机降价10%后每台售价为2430元,则这种彩电的原价为每台 元。
8. 在梯形面积公式 中,若 , , ,则 ________________.
二、精心选一选(3′×8=24′)
9.下列变形中正确的是( )
A.由 得 B.由 得
C.由 得 D.由 得
10. 把方程 去分母后,正确的是( )
A、 B、 C、 D、
11.方程 的“解”的步骤如下,错在哪一步( )
A. 2(x-1)-(x+2)=3(4-x) B.2x-2-x+2=12-3x
C. 4 x=12 D.x=3
12.下列方程括号内的数是这个方程的解的是( )
A. B.
C. D.
13.方程 的解是 ,则 等于( )
A. B. C. D.
14.一个长方形的长是宽的4倍多2厘米,设长为x厘米,那么宽为( )厘米。
A、 B、4x-2 C、 D、
15.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组才能使第一组的人数是第二组的2倍?
设抽调 人,则可列方程( )
A. B.
C. D.
16.某件商品标价为13200元,若以9折出售,仍可获利10%(相对于进货价),则该商品的进货价为( )
A.10692元 B.10560元 C.10800元 D.11880元
三、解下列方程(6分×4=24分)
⑴2x+5=5x-7 (2)3(x-2)=2-5(x-2)
四、耐心解一解。(6′)
17.k取何值时,代数式 值比 的值小1?
五、列方程解应用题(10′+8′+8′)
18. 某中学组织同学们春游,如果每辆车座54人,有18人没座位,如果每辆车座72人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?
19.小明用每小时8千米的速度到某地郊游,回来时走比原路长3 千米的另一条路线,速度为每小时9千米,这样回去比去时多用 小时,求原路长.
20.李小明一年前存入一笔钱,年利率为2.25%,但要缴纳20%的利息税, 到期共获得本息和为16288元,求李小明一年前存入银行的本金是多少元?
附加题:某城市制定了居民用水标准,规定三口之家每月用水量的最高标准,超标部分加价收费,如果在标准用水量内每米3的水费是1.4元,超标部分每米3的水费是2.8元。现小明家是三口之家,某月用水14米3,妈妈交水费22.4元,问这座城市规定三口之家每月用水量的最高标准是多少米3?(10分)

跪求!七年级数学一元一次方程解题方法

我们在五年级学过一句话:含有未知数的算式叫做方程。
那么,请看:
一般解法:
⒈去分母 方程两边同时乘各分母的最小公倍数。
⒉去括号 一般先去小括号,再去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。
⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
⒋合并同类项 将原方程化为ax=b(a≠0)的形式。
⒌系数化一 方程两边同时除以未知数的系数。
⒍得出方程的解。
同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
做一元一次方程应用题的重要方法:
⒈认真审题
⒉分析已知和未知的量
⒊找一个等量关系
⒋设未知数
⒌列方程
⒍解方程
⒎检(jian三声)验
⒏写出答
教学设计示例
教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤.
课堂教学过程设计
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1 某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过例项来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以 x=50 000.
答:原来有 50 000千克面粉.
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

七年级数学一元一次方程应用题怎样学

不知道怎么学,只知道怎么做

人教版七年级数学一元一次方程的教学设计

3.2 解一元一次方程
一、素质教育目标
(一)知识教学点
1.要求学生学会用移项解方程的方法.
2.使学生掌握移项变号的基本原则.
(二)能力训练点
由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.
(三)德育渗透点
用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.
(四)美育渗透点
用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.
二、学法引导
1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.
2.学生学法:练习→移项法制→练习
三、重点、难点、疑点及解决办法
1.重点:移项法则的掌握.
2.难点:移项法解一元一次方程的步骤.
3.疑点:移项变号的掌握.
四、课时安排:3课时
五、教具学具准备
投影仪或电脑、自制胶片、复合胶片.
六、师生互动活动设计
教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习汇入
师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.

七年级数学一元一次方程 解方程 很急啊 快快快

两边同时乘以6:3*(3x+5)=2*(2x-1)
去掉括号:9x+15=4x-2
移一下:9x-4x=-2-15
所以:5x=-17
所以:x=-17/5

七年级上册数学一元一次方程:

因为19x-a=0的根为1-a
所以 将x=1-a代入原方程,得
19(1-a)-a=0
19-19a-a=0
20a=19
a=19/20

  
永远跟党走
  • 如果你觉得本站很棒,可以通过扫码支付打赏哦!

    • 微信收款码
    • 支付宝收款码