首脑 (1+1/2+1/4)×(1/2+1/4+1/6)-(1+1/2+1/4+1/6)×(1/2+1/4)
(1+1/2+1/4)×(1/2+1/4+1/6)-(1+1/2+1/4+1/6)×(1/2+1/4)

(1+1/2+1/4)×(1/2+1/4+1/6)-(1+1/2+1/4+1/6)×(1/2+1/4)
令a=1/2+1/4
(1+1/2+1/4)×(1/2+1/4+1/6)-(1+1/2+1/4+1/6)×(1/2+1/4)
=(1+a)×(a+1/6)-(1+a+1/6)×a
=(1+a)×a+(1+a)×1/6-[(1+a)×a+1/6×a]
=(1+a)×a+(1+a)×1/6-(1+a)×a-1/6×a
=(1+a)×1/6-1/6×a
=1×1/6+a×1/6-1/6×a
=1/6
希望对你能有所帮助。
1+1/2+1/4+1/8+…+1/512=?
1+(1-1/2)+(1/2-1/4)+(1/4-1/8)+(1/8-1/16)+...+(1/256-1/512)=2-1/512=..后面自己算,,,
1+1/2+1/3+1+1/2+13+1/4+1+1/2+1/3+1/4+1/5+……+1/15=
=15*1+14*1/2+13*1/3+…+1*1/15
然后得出各种积后15个数相加求和。
计算1+(1+1/2)+(1+1/2+1/4)+……[1+1/2+1/4+1/8+1/2^(n-1)]=?
原式 = (2-1)+(2-1/2)+...+[2-1/2^(n-1)]
= 2n - [1+1/2+...+1/2^(n-1)]
= 2n - [2 - 1/2^(n-1)]
= 2(n-1) + 1/2^(n-1)
|-1+1/2|+|-1/2+1/3|+|-1/4+1/5|+...+|-1/2011+1/2012|
|-1+1/2|+|-1/2+1/3|+|-1/4+1/5|+...+|-1/2011+1/2012|
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/2011-1/2012
=1-1/2012
=2011/2012
(1/2+1/3+1/4....+1/2012)(1+1/2+1/3++1/2011)-(1+1/2+1/3+...+1/2012)(1/2+1/3+1/4+...+1/2011)
设x=1/2+1/3+1/4....+1/2012
y=1/2+1/3+……+1/2011
(1/2+1/3+1/4...+1/2012)(1+1/2+1/3++1/2011)-(1+1/2+1/3+..+1/2012)(1/2+1/3+1/4+...+1/2011)
=x(1+y)-(1+x)y
=x+xy-y-xy
=x-y
=1/2012
(1/2+1/3+1/4+...+1/2010)(1+1/2+1/3+...+1/2009)-(1+1/2+1/3+...+1/2010)(1/2+1/3+1/4+...+1/2009
第一个括号里先+1再-1,也就是变成(1+1/2+1/3+1/4+...+1/2010-1)
式子就变成【(1+1/2+1/3+1/4+...+1/2010)-1】(1+1/2+1/3+...+1/2009)-(1+1/2+1/3+...+1/2010)(1/2+1/3+1/4+...+1/2009)
把前两个乘积按分配律展开,就变成:(1+1/2+1/3+1/4+...+1/2010)(1+1/2+1/3+...+1/2009)-1×(1+1/2+1/3+...+1/2009)-(1+1/2+1/3+...+1/2010)(1/2+1/3+1/4+...+1/2009)
=(1+1/2+1/3+1/4+...+1/2010)(1+1/2+1/3+...+1/2009)-(1+1/2+1/3+...+1/2010)(1/2+1/3+1/4+...+1/2009)-1×(1+1/2+1/3+...+1/2009)
=(1+1/2+1/3+1/4+...+1/2010)【(1+1/2+1/3+...+1/2009)-(1/2+1/3+1/4+...+1/2009)】-1×(1+1/2+1/3+...+1/2009)
=(1+1/2+1/3+1/4+...+1/2010)-(1+1/2+1/3+...+1/2009)
=1/2010
打字好辛苦…不知道你能不能看懂…