机器视觉图像处理系统包括 机器视觉系统一般用于什么行业
机器视觉系统一般用于什么行业
机器视觉系统一般用于什么行业
图像采集设备机器视觉教学实验平台是专门针对大学和研究机构开展机器视觉教学和研究的机器视觉教学实验平台,提供包括图像测量、检测、定位、跟踪识别等多个图像处理库函数,功能强大,可覆盖工业生产、机器视觉、智能交通、航空航天等众多图像处理应用领域。
机器视觉图像处理教学实验开发平台可利用其提供的大量图像处理和机器视觉算法进行二次开发,解决现代工业产品生产过程中涉及的各种各样视觉问题。实验平台结构开放,提供扩展接口,也可添加自己的图像处理优异算法。
提供多种图像处理实验,如图象分割、图象融合、机器学习、模式识别、图象测量、图象处理、模式识别和人工智能、三维测量、双目立体视觉等实验,可以培养学生对机器视觉产品知识的深入理解和掌握,锻炼学生的研究能力,创新思维以及独立解决技术难题的能力。
作为一套完整的机器视觉教学实验开发平台,使用者可利用其配套的工业相机、LED光源、工业镜头、支架、算法软件等搭建自己的视觉处理系统原型,了解图像采集设备等配件的应用和选型,轻松设计、印证和评估自己的视觉系统,特别适合于大学和研究机构开展机器视觉教学和科研工作。
什么是机器视觉系统?
机器视觉系统就是使机器具有像人一样的视觉功能,实现各种检测,判断,识别,测量等等功能。一个典型的机器视觉系统包括:光源,镜头,相机,图象处理(硬件和软件)等等
机器视觉系统通过图象采集硬件被摄取目标转换成图象信号,并传送给专用的图象处理系统。图象处理系统根据像素亮度,颜色分布等信息,进行目标特征的抽取,并进行相应的判断,进而根据结果来控制现场的设备。
机器视觉系统就是利用机器代替人眼来作各种测量和判断。经过图像采集,图像处理,重要数据输出的过程,实现机器人视觉系统的测量和判断。它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。
机器视觉系统一般包括光源、镜头、CCD照相机、图像处理单元(或图像采集卡)、图像处理软件、监视器、通讯/输入输出单元等。
光源:与视觉传感器的照明因素一样,它是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。其光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。另一方面,环境光有可能影响图像的质量,所以可采用基于PC的方案主要针对电子生产测试设备,其优点是高性能、高灵活度和高性价比,十分适合于高难度、高分辨率和高速的机器视觉应用。 所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步.
镜头:镜头选择应注意焦距,目标高度,影像高度,放大倍数,影像至目标的距离,中心点 / 节点与畸变.
相机:按照不同标准可分为标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。
图象采集卡:图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等。比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。
视觉处理器:视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集卡可以快速传输图象到存储器,而且计算机也快多了,所以现在视觉处理器用的较少了。
工作过程:视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如尺寸数据)。通常,机器视觉测试就是用机器代替肉眼来做测量和判断.首先采用CCD照相机将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号。图像系统对这些信号进行各种运算来抽取目标的特征,如:面积、长度、数量、位置等。最后,根据预设的容许度和其他条件输出结果,如:尺寸、角度、偏移量、个数、合格/不合格、有/无等。
CCD机器视觉系统?
CCD机器视觉系统
1、导航定位:视觉定位要求机器视觉检测系统快速准确地找到零件并确定其位置,并利用机器视觉检测定位材料,引导机械手臂准确掌握。在半导体封装领域中,器件需要根据机器视觉的位置信息进行调整,拾取芯片并准确绑定,这是视觉定位在机器视觉检测行业中最基本的应用。
2,外观测试:测试生产线产品没有质量问题,这一环节也是最重要的环节,以取代人工。机器视觉测试涉及到医学领域。其主要检测有尺寸检测、瓶体外观缺陷检测、瓶肩缺陷检测、瓶口检测等。
3、高精度的检测:部分产品精度高,达到0.01 ~ 0.02m甚至U级。机器不能检测到人眼。
4、识别:利用机器视觉检测、图像处理、分析和理解,识别各种模式的目标和物体。这些数据可以追溯和收集,广泛应用于汽车、食品、医药等行业。随着计算机技术和自动控制技术的发展,越来越多的智能机器人出现在生产和生活中。智能工业机器人系统作为智能工业机器人系统的一个重要子系统,越来越受到人们的重视。
行业分析,随着机器视觉检测技术的发展,新产业在未来的应用可能会出现。大量的工业生产可能是物流业,尤其是三维视觉。公务员需要更多经验。难点在于环境的大变化性和算法的高冗余性。民用产品主要来自消费产品。
随着社会现代化进程的推进,中国的工业已经取得了很大的进步。经过长时间积累的机器视觉检测市场,我国出现了一些具有一定实力的视觉检测设备制造商。
比如:广东嘉铭智能科技有限公司有限公司成立于1992年。集研发、设计、生产、制造、服务于一体的高新科技企业。
机器视觉行业如何设计机器视觉系统框架
如何设计机器视觉系统框架 --- 创科黎友在决定一个机器视觉系统的需求及应用时,很多因素需要考虑。机器视觉(或称为自动可视检测系统)一般包含了大量部件,这些部件直接影响系统的性能。为了获得这些子系统的优越性能,并无缝将他们接合在你的生产线上,最好花一些时间来学习视觉系统的组成、应用、以及正确的规划的重要性。 机器视觉的应用在对精度和可靠性都很高的重复性检测任务中,机器视觉广泛应用在这些生产流程中。一些常见的任务:在食物包装中检测数据代码;自动检测部件用于正确的安装;为机器人的捡起(pick)和放置(place)动作提供向导;在制药中效验药品的颜色;读取部件的条形码、以及在产品上的标识;还有更多更多。基于PC的机器视觉系统的基本组成 由于机器视觉应用非常广泛,在不同的系统里使用不同的部件,但是,我们可以将这些部件分成如下几类(见图1)。图1 通常的机器视觉系统的主要组成(附件1) 1. 摄像头和光学部件 –这一类通常含有一个或多个摄像头和镜头(光学部件),用于拍摄被检测的物体。根据应用,摄像头可以基于如下标准,黑白RS-170/CCIR、复**色(Y/C),RGB彩色,非标准黑白(可变扫描),步进扫描(progressive-scan)或线扫描。 2. 灯光 –灯光用于照亮部件,以便从摄像头中拍摄到更好的图像,灯光系统可以在不同形状、尺寸和亮度。一般的灯光形式是高频荧光灯、LED、白炽灯和石英卤(quartz-halogen)光纤。 3. 部件传感器 –通常以光栅或传感器的形式出现。当这个传感器感知到部件靠近,它会给出一个触发信号。当部件处于正确位置时,这个传感器告诉机器视觉系统去采集图像。 4. 图像采集卡 –也称为视频抓取卡,这个部件通常是一张插在PC上的卡。这张采集卡的作用将摄像头与PC连接起来。它从摄像头中获得数据(模拟信号或数字信号),然后转换成PC能处理的信息。它同时可以提供控制摄像头参数(例如触发、曝光时间、快门速度等等)的信号。图像采集卡形式很多,支持不同类型的摄像头,不同的计算机总线。 5. PC平台 –计算机是机器视觉的关键组成部分。应用在检测方面,通常使用Pentium III或更高的CPU。一般来讲,计算机的速度越快,视觉系统处理每一张图片的时间就越短。由于在制造现场中,经常有振动、灰尘、热辐射等等,所以一般需要工业级的计算机。 6. 检测软件 –机器视觉软件用于创建和执行程序、处理采集回来的图像数据、以及作出“通过/失败(PASS/FAIL)”决定。机器视觉有多种形式(C语言库、 ActiveX控件、点击编程环境等等),可以是单一功能(例如设计只用来检测LCD或BGA、对齐任务等等),也可以是多功能(例如设计一个套件,包含计量、条形码阅读、机器人导航、现场验证等等)。 7. 数字I/O和网络连接 –一旦系统完成这个检测部分,这部分必须能与外界通信,例如需要控制生产流程、将“通过/失败(PASS/FAIL)”的信息送给数据库。通常,使用一张数字I/O板卡和(或)一张网卡来实现机器视觉系统与外界系统和数据库的通信。 配置一个基于PC的机器视觉系统认真的计划和注意细节能帮助你确保你的检测系统符合你的应用需求。如下是你必需考虑的几点: 确定你的目标 –这可能是最重要的一步 枣决定在这个检测任务中你需要实现什么,检测任务通常分为如下几类: 1. 测量或计量 2. 读取字符或编码(条形码)信息。 3. 检测物体的状态 4. 认知和识别特殊的特性枣模式识别 5. 将物体与模板进行对比或匹配 6. 为机器或机器人导航检测流程可以包含只有一个操作或包含多个与检测任务相关的任务。为了确认你的任务,首先你应该明确为了最大限度检测部件你需要做的测试,也就是你能考虑到会出现的缺陷。为了明确什么哪个才是最重要的,最好做一张评估表,列出“必须做”和“可以做”的测试。一旦主要的对测试标准满意,随后可以将更多的测试加进去来改善检测过程,一定要记住,添加测试的同时也会增加检测的时间。确定你需要的速度 –系统检测每一个部件需要多少时间?这个不只是由PC的速度决定,还受生产流水线速度的影响。很多机器视觉包含了时钟/计时器,所以检测操作的每一步所需要的时间都可以准确测量,从这些数据,我们就可以修改我们的程序以满足时间上的要求。通常,一个基于PC的机器视觉系统每一秒可以检测20-25个部件,与检测部件的多少和处理程序以及计算机的速度有密切关系。聪明地选择你的硬件 –一套机器视觉系统的性能与它的部件密切相关。在选择的过程中,有很多捷径枣特别在光学成像上枣可能很大程度降低系统的效率。如下是在选择部件时你必须紧记的几个基本原则。 1. 摄像头摄像头的选择与应用的需求直接相关,通常考虑三点:a)黑白还是彩色;b)部件/目标的运动;c)图像分辨率。在检测应用中大部分使用黑白摄像头,因为黑白图像能提供90%可视数据,并且比彩色便宜。彩色摄像头主要用于一些需要分析彩色图像的场合里。根据部件在检测时是否移动,决定我们选择标准隔行扫描摄像头还是逐行扫描摄像头。另外,图像的分辨率必须足够高,以提供检测任务需要的足够的数据。最后,摄像头必须质量好和可以避免工业现场中的振动、灰尘和热的影响。 2. 光学部件和照明这个至关重要的因素往往被人所忽略。当你使用一个很差的光学部件或照明,就算你使用最好的机器视觉系统,它表现出的性能甚至比不上一个配上良好光学部件和适当照明的低能力系统。光学部件的目标是产生最好和最大可用面积的图像,并且提供最好的图像分辨率。照明的目标是照亮需要测量或检测的部分的关键特征。通常,照明系统的设计由如下因素决定:颜色、纹理、尺寸、外形、反射率等等。 3. 图像采集卡虽然图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。使用模拟输入的图像采集卡,目标是尽量不变地将摄像头采集的图像转换为数字数据。使用不正确的图像采集卡可能得到错误的数据。工业用的图像采集卡通常用于检测任务,多媒体采集卡由于它通过自动增益控制、边沿增强和颜色增强电路来更改图像数据,所以不用在这个领域里。使用数字输入的图像采集卡的目标是将摄像头输出的数字图像数据转换并输送到PC中作处理。考虑各种变化:人类的眼睛和大脑可以在不同的条件下识别目标,但是机器视觉系统就不是这样多才多艺了,它只能按程序编写的任务来工作。了解你的系统能看到什么和不能看到什么能帮助你避免失败(例如将好的部件认为是坏的)或其它检测错误。一般要考虑的包括部件颜色、周围光线、焦点、部件的位置和方向和背景颜色的大变化。正确选择软件:机器视觉软件是检测系统中的智能部分,也是最核心的部分。软件的选择决定了你编写调试检测程序的时间、检测操作的性能等等。图2 DTVF是一个多功能、图形化编程的机器视觉软件(附件2)机器视觉提供了图形化编程界面 (通常称为“Point & Click”) 通常比其他编程语言(例如Visual C++)容易,但是在你需要一些特殊的特征或功能时有一定的局限性。基于代码的软件包,尽管非常困难和需要编码经验,但在编写复杂的特殊应用检测算法具备更大的灵活性。一些机器视觉软件同时提供了图形化和基于代码的编程环境,提供两方面最好的特征,提供了很多灵活性,满足不同的应用需求。通信和记录数据:机器视觉系统的总的目标是通过区分好和坏的部件来实现质量检测。为了实现这一功能,这个系统需要与生产流水线通信,这样才可以在发现坏的部件是做某种动作。通常这些动作是通过数字I/O板,这些板与制造流水线中的PLC相连,这样坏的部件就可以跟好的部件分离。例外,机器视觉系统可以与网络连接,这样就可以将数据传送给数据库,用于记录数据以及让质量控制员分析为什么会出现废品。在这一步认真考虑将有助于将机器视觉系统无缝与生产流水线结合起来。需要考虑的问题是: 1. 使用了什么类型的PLC,它的接口如何? 2. 需要什么类型的信号? 3. 现在使用或必须使用什么类型的网络? 4. 在网络上传送的文件格式是什么?通常使用RS-232端口与数据库通信,来实现对数据的纪录。为以后做准备:当你为机器视觉系统选择部件时,时刻记住未来的生产所需和有可能发生的变动。这些将直接影响你的机器视觉软硬件是否容易更改来满足以后新的任务。提前的准备将不仅仅节约你的时间,而且通过在将来重用现有的检测任务可以降低整个系统的价格。机器视觉系统的性能由最差的部分决定(就像一个木桶的容量由最短的一个木块决定),精度则由它能获取的信息决定。花时间和精力合理配置系统就可以建造一个零故障和有弹性的视觉检测系统。
机器视觉系统是什么?
机器视觉,就是机器的眼睛,功能是和人的眼睛一样的,看东西、分析事物。但是它又是区别于人的眼睛,人眼看东西分析判别事物会有很多的不确定因素,会出现误差,但是机器是有一定标准的不会出现差错。概括起来就是几大类:1、定位引导,即给机器指令告诉他去什么地方拿东西;2、自动装配,即把东西放到指定地方;3、缺陷检测,这是属于视觉检测类,是由视觉检测系统完成,对产品各种缺陷比如大小不一样、位置不同、有和无、损伤等的检测;4、测量,这也是属于视觉检测,是对目标产品几何形状的测量;5、识别,对产品进行识别分析,比如一维码二维码,字符等。
机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号!还不明白就去搜下天邦登峰看看吧,它那有产品!

机器视觉系统有什么功能?
首先你要弄明白什么是机器视觉系统。所谓的机器视觉系统,其实就是一套基于视觉信息,来完成一定功能的设备。加装有视觉传感器的目的(作用)是为了使设备具备类似人的视觉功能,从而提高设备的智能化程度,从而提高生产线的效率和提升产品质量。利用机器视觉能完成一些不适合人工作的危险环境或人眼难以满足质量要求的场合。因此,利用机器视觉技术,能提高生产线自动化和柔性化水平。 希望这个回答能让你满意!
怎样做好机器视觉系统?
深圳目前是国内机器视觉最发达的地区,现在全国做机器视觉的都集中在华南,华东也有一些,北京有一些。在华南地区的一些系统集成商他们具有较多的实践经验,因为那里工业相对发达,机器视觉需求要较多,所以每年做的视觉方面的项目还是比较多的,华北特别是北京比较偏重研究类的,实际接触的项目经验较少。华南地区做视觉的一般是工控类的公司,而北京主要是研究类的出来做视觉。我感觉现在机器视觉行业正在走向成熟,会慢慢普及的。但是目前很多用户对视觉还缺乏认识,需要引导。