在81个零件中要找出一个废品,至少要称几次
现在有81个零件,其中有一个因为原材料内部有砂眼,是个废品,需要把它找出来。这个废品虽然从表面上看不出来,但由于内部有空洞,所以比别的零件要轻。因此,我们可以采取称量的方法。那么怎样使称量的次数最少呢?
一般的方法应该是,在天平的两边各放一个零件,如果平衡,那么都不是废品;如果不平衡,那么较轻的一个就是废品。因此,称一次能决定在2个零件中有没有废品。那么如果是3个零件,是不是也可以只称一次呢?答案是肯定的。因为如果3个零件中有一个是废品,那么任取两个放在天平的两端,如果平衡,那么另外的一个就是废品;如果不平衡,当然较轻的一个是废品。
那么,如果是在9个零件中,需要称几次呢?我们首先把9个零件等分成3堆,每堆3个,随便取其中的2堆,分别放在天平的两端,称一次就可以决定废品在哪一堆。然后再把有废品的那一堆,按照上面的方法再称一次,就可以找到废品,因此只需要称2次。
根据同样的道理,我们可以把81个零件先等分成3堆,每堆27个,任取其中的2堆称1次,就可以确定废品在哪一堆。再把这一堆27个等分成3堆,每堆9个,取其中的2堆再称1次。这样下去,总共只要称4次,就可以在81个零件中找出废品来。
那么如果零件的个数更多呢?例如243、729、…,所以需要找出这其中的规律来。也许你已经看出来了,零件的个数如果等于3n,那么最少的称量次数就是n。例如81=34,那么在81个零件中要找出一个废品,至少要称4次。由于243=35,729=36,因而对于243和729个零件来说,最少的称量次数分别是5次和6次。如果零件的个数并不正好等于3n,又如何来安排呢?这个问题留给大家自己去思考。
- 上一篇
怎样把250只苹果巧装在8只篮子里
问题是这样的:假设每只篮子的容量都足够大,可以让你装入250只以内的任意数量的苹果,怎样把250只苹果巧装在8只篮子里,然后不管你要拿多少只苹果,都不需要一只只地数,只要拿几只篮子就可以了。 怎样才能做到呢?仔细思考一下,这个问题其实就是:如何把250分
- 下一篇
为什么“马”能走遍棋盘上的每一位置!
在中国象棋中,“马”走的是日字的对角顶点。但很有意思的是,“马”能够走遍棋盘上的所有位置。这个结论可以非常简单地证明。 显然,只要“马”能走到棋盘上相邻的两个位置,它一定能走遍棋盘上所有的位置。如图1假定“马”的初始位置在A点,要走到与A相邻的B点。我们总