a与c计算公式 计算1/{a(a+1)}+1/{(a+1)(a+1)}+{(a+2)(a+3)}+.+1/{(a+2005)(a+2006))}
计算1/{a(a+1)}+1/{(a+1)(a+1)}+{(a+2)(a+3)}+.+1/{(a+2005)(a+2006))}
计算1/{a(a+1)}+1/{(a+1)(a+1)}+{(a+2)(a+3)}+.....+1/{(a+2005)(a+2006))}
1/{a(a+1)}+1/{(a+1)(a+1)}+{(a+2)(a+3)}+.....+1/{(a+2005)(a+2006))}
=1/a-1/(a+1)+1/(a+1)-1/(a+1)}++1/(a+2)-1/(a+3)+.....+1/(a+2005)-1/(a+2006))
=1/a-1/(a+2006))
=2006/[a(a+2006)]
计算1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+···+1/(a+2004)(a+2005)
1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+···+1/(a+2004)(a+2005)
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+---+1/(a+2004)-1/(a+2005)
=1/a-1/(a+2005)
=2005/(a²+2005a)

计算:1/[a(a+1)]+1/[(a+1)(a+2)]+1/[(a+2)(a+3)+...+1/[(a+2006)(a+2007)]
1/[a(a+1)]=1/a-1/(a+1)
1/[(a+1)(a+2)]=1/(a+1)-1/(a+2)
1/[(a+2)(a+3)]=1/(a+2)-1/(a+3)
……
1/[(a+2005)(a+2006)]=1/(a+2005)-1/(a+2006)
1/[(a+2006)(a+2007)]=1/(a+2006)-1/(a+2007)
原式
1/[a(a+1)]+1/[(a+1)(a+2)]+1/[(a+2)(a+3)+...+1/[(a+2006)(a+2007)]
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+……+1/(a+2005)-1/(a+2006)+1/(a+2006)-1/(a+2007)
=1/a-1/(a+2007)
=2007/[a(a+2007)]
计算:{1/a(a+1)}+{1/(a+1)(a+2)}+{1/(a+2)(a+3)}+…+{1/(a+2006)(a+2007)}+{1/(a+2007(a+2008)}
这个,我们来分析一下,
首先,这是一个有规律可以找的,
一,分母是两个数的积,并且,相差1
二,分子,都是 1
三,这样,想到,如果,分子,分母相差1,且是积,
如1/ab,a-b=1,这时,1/ab=1/b-1/a
四,做,:
{1/a(a+1)}+{1/(a+1)(a+2)}+{1/(a+2)(a+3)}+…+{1/(a+2006)(a+2007)}+{1/(a+2007(a+2008)}
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+…+1/(a+2006)-1/(a+2007)+1/(a+2007)-1/(a+2008)
=1/a-1/(a+2008)
=2008/a(a+2008)
计算:1/a(a+1)+1/(a+1)(a+2)+...+1/(a+2006)(a+2007)
裂项:1/a(a+1)=1/a-1/(a+1)
1/a(a+1)+1/(a+1)(a+2)+...+1/(a+2006)(a+2007)
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+...+1/(a+2006)-1/(a+2007)
=1/a-1/(a+2007)
1/a(a+1)+1/(a+1)(a+2)+......1/(a+2006)(a+2007)=?
用裂项公式
1/a-1/(a+1)+1/(a+1)-1/(a+2)……+1/(a+2006)-1/(a+2007)
=1/a-1/(a+2007)
=(a+2007)-a/a(a+2007)
=2007/a^2+1/a
计算1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+......+1/(a+2012)(a+2013)
原式=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+......+1/(a+2012)-1/(a+2013)
=1/a-1/(a+2013)
=2013/(a²+2013a)
计算:1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+......+1/(a+2003)(a+2004)
1/a(a+1) + 1/(a+1)(a+2) + 1/(a+2)(a+3)....1/(a+2003)(a+2004)
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3).....+1/(a+2003)-1/(a+2004)
=1/a-1/(a+2004)
=2004/a(a+2004)
希望我的答案能够帮到你
计算:1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+…1/(a+2009)(a+2010)
原式 =1/a-1/(a+1)+1/(a+1)-1/(a+2)+...+1/(a+2009)-1/(a+2010) =1/a-1/(a+2010)
计算:1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+...+1/(a+9)(a+10)
1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+...+1/(a+9)(a+10)
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+...+1/(a+5)-1/(a+10)
=1/a-1/(a+10)
=10/a(a+10)