a与c计算公式 计算1/{a(a+1)}+1/{(a+1)(a+1)}+{(a+2)(a+3)}+.+1/{(a+2005)(a+2006))}
计算1/{a(a+1)}+1/{(a+1)(a+1)}+{(a+2)(a+3)}+.+1/{(a+2005)(a+2006))}
计算1/{a(a+1)}+1/{(a+1)(a+1)}+{(a+2)(a+3)}+.....+1/{(a+2005)(a+2006))}
1/{a(a+1)}+1/{(a+1)(a+1)}+{(a+2)(a+3)}+.....+1/{(a+2005)(a+2006))}
=1/a-1/(a+1)+1/(a+1)-1/(a+1)}++1/(a+2)-1/(a+3)+.....+1/(a+2005)-1/(a+2006))
=1/a-1/(a+2006))
=2006/[a(a+2006)]
计算1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+···+1/(a+2004)(a+2005)
1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+···+1/(a+2004)(a+2005)
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+---+1/(a+2004)-1/(a+2005)
=1/a-1/(a+2005)
=2005/(a²+2005a)

计算:1/[a(a+1)]+1/[(a+1)(a+2)]+1/[(a+2)(a+3)+...+1/[(a+2006)(a+2007)]
1/[a(a+1)]=1/a-1/(a+1)
1/[(a+1)(a+2)]=1/(a+1)-1/(a+2)
1/[(a+2)(a+3)]=1/(a+2)-1/(a+3)
……
1/[(a+2005)(a+2006)]=1/(a+2005)-1/(a+2006)
1/[(a+2006)(a+2007)]=1/(a+2006)-1/(a+2007)
原式
1/[a(a+1)]+1/[(a+1)(a+2)]+1/[(a+2)(a+3)+...+1/[(a+2006)(a+2007)]
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+……+1/(a+2005)-1/(a+2006)+1/(a+2006)-1/(a+2007)
=1/a-1/(a+2007)
=2007/[a(a+2007)]
计算:{1/a(a+1)}+{1/(a+1)(a+2)}+{1/(a+2)(a+3)}+…+{1/(a+2006)(a+2007)}+{1/(a+2007(a+2008)}
这个,我们来分析一下,
首先,这是一个有规律可以找的,
一,分母是两个数的积,并且,相差1
二,分子,都是 1
三,这样,想到,如果,分子,分母相差1,且是积,
如1/ab,a-b=1,这时,1/ab=1/b-1/a
四,做,:
{1/a(a+1)}+{1/(a+1)(a+2)}+{1/(a+2)(a+3)}+…+{1/(a+2006)(a+2007)}+{1/(a+2007(a+2008)}
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+…+1/(a+2006)-1/(a+2007)+1/(a+2007)-1/(a+2008)
=1/a-1/(a+2008)
=2008/a(a+2008)
计算:1/a(a+1)+1/(a+1)(a+2)+...+1/(a+2006)(a+2007)
裂项:1/a(a+1)=1/a-1/(a+1)
1/a(a+1)+1/(a+1)(a+2)+...+1/(a+2006)(a+2007)
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+...+1/(a+2006)-1/(a+2007)
=1/a-1/(a+2007)
1/a(a+1)+1/(a+1)(a+2)+......1/(a+2006)(a+2007)=?
用裂项公式
1/a-1/(a+1)+1/(a+1)-1/(a+2)……+1/(a+2006)-1/(a+2007)
=1/a-1/(a+2007)
=(a+2007)-a/a(a+2007)
=2007/a^2+1/a
计算1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+......+1/(a+2012)(a+2013)
原式=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+......+1/(a+2012)-1/(a+2013)
=1/a-1/(a+2013)
=2013/(a²+2013a)
计算:1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+......+1/(a+2003)(a+2004)
1/a(a+1) + 1/(a+1)(a+2) + 1/(a+2)(a+3)....1/(a+2003)(a+2004)
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3).....+1/(a+2003)-1/(a+2004)
=1/a-1/(a+2004)
=2004/a(a+2004)
希望我的答案能够帮到你
计算:1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+…1/(a+2009)(a+2010)
原式 =1/a-1/(a+1)+1/(a+1)-1/(a+2)+...+1/(a+2009)-1/(a+2010) =1/a-1/(a+2010)
计算:1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+...+1/(a+9)(a+10)
1/a(a+1)+1/(a+1)(a+2)+1/(a+2)(a+3)+...+1/(a+9)(a+10)
=1/a-1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+...+1/(a+5)-1/(a+10)
=1/a-1/(a+10)
=10/a(a+10)
相关文章
- A1662 已知数列AN中A1=1且AN+1=AN/2AN+1(N属于整数)
- 同比计算公式 计算:1-2+3-4+5-6+.(-1)的(n+1)的次方乘以n怎么做
- a方乘以a方等于 计算:(3+a)(3-a)+a的平方 化简:(1+a)(1-a)+a(a-2)
- 令a1a2an是n个两两不同的数 已知对于任意正整数n都有a1+a2+.+an=n^3,则(1/a2-1)+(1/a3-1)+.+(1/a100-1)=_____
- 同比计算公式 计算 (-1)+(+2)+(-3)+(+4)+(-5)+.+(-2009)+(+2010)
- 如图已知ab平行de 已知abc=1,求证:a/(ab+a+1)+b/(bc+a+1)+c/(ca+c+1)=1
- n+1/n的极限 求无限项数列和的极限 求lim (n→+∞) (1/1)+(1/3)+(1/7)+(1/15)+……+1/(2^n-1)
- 数列公式 在等比数列中{an}中,已知对于任意的n属于n+,有a1+a2+a3+……+an=2^n-1,则a1^2+a2^2+a3^2+……+an^2=
- 先化简再求值的方法 先化简,再求值:a+2分之a-1×a²-2a+1分之a²-4÷a²-1分之1,其中a满足a²-a=0
- x-0.8x=1.2解方程 (1)解方程:1x?2=1?x2?x?3(2)计算:a2a+1?a+1
爱学记

微信收款码
支付宝收款码