您现在的位置是:首页 >

一张图看懂AI,机器学习和深度学习的区别

火烧 2023-04-12 10:21:53 1053
一张图看懂AI,机器学习和深度学习的区别 一张图看懂AI,机器学习和深度学习的区别深度学习与AI。本质上来讲,人工智能相比深度学习是更宽泛的概念。人工智能现阶段分为弱人工智能和强人工智能,实际上当下科

一张图看懂AI,机器学习和深度学习的区别  

一张图看懂AI,机器学习和深度学习的区别

深度学习与AI。本质上来讲,人工智能相比深度学习是更宽泛的概念。人工智能现阶段分为弱人工智能和强人工智能,实际上当下科技能实现的所谓“人工智能”都是弱AI,奥创那种才是强AI(甚至是boss级的)。而深度学习,是AI中的一种技术或思想,曾被MIT技术评论列为2013年十大突破性技术(Deep Learning居首)。或者换句话说,深度学习这种技术(我更喜欢称其为一种思想,即end-to-end)说不定就是实现未来强AI的突破口。

2. 深度学习与ML。DL与ML两者其实有着某种微妙的关系。在DL还没有火起来的时候,它是以ML中的神经网略学习算法存在的,随着计算资源和big data的兴起,神经网络摇身一变成了如今的DL。学界对DL一般有两种看法,一种是将其视作feature extractor,仅仅用起提取powerful feature;而另一种则希望将其发展成一个新的学习分支,也就是我上面说的end-to-end的“深度学习的思想”。

一张图看懂AI,机器学习和深度学习的区别

一篇文章讲清楚人工智能,机器学习和深度学习的区别

深度学习是机器学习的方向和领域之一,机器学习又是人工智能的方向和领域之一。
具体他们分别研究哪些问题一篇文章很难讲清楚哩。不过大多数人都推荐图灵的那篇论文作为研究起点。
目前深度学习因为取得了很多关键技术进展,效果超出预期所以很热,很多领域开始利用深度学习解决一些实际问题。深度学习的巨大进展带动机器学习其他分支学科一起热了起来。
人工智能技术未来将会想电力、通信、互联网等技术一样成为社会的基本支撑技术之一。
会为社会带来更多的崭新工作职位。
本识科技让简单触手可及。

是一个包含的关系。
机器学习是人工智能的一种,深度学习是机器学习的一种

人工智能包含机器学习,机器学习包含深度学习。深度学习是在机器学习的基础上发展出来的。感兴趣可以搜搜我的视频课程,用Python做深度学习,讲的更详细些。

你可以这样理解,人工智能是一个婴儿的大脑,而深度学习就是让这个婴儿的大脑又能力看世界、听世界、感受世界。直观的说,深度学习只是服务于人工智能一个工具(也许若干年后,一种全新的工具可以代替深度学习实现人工智能),把这个工具用在语音识别领域,就能让机器更会听;把他用在了计算机视觉领域,就能让机器更会看。
深度学习的本质就是各种神经网络,从最早最简单的感知机,再到多层神经网络,再到现在很火的CNN、RNN,其目的都是构建一个合适的神经网络结构,让机器有能力“自己思考”——我们也称之为“智能”。
关于机器学习,它是比深度学习更为广泛的概念,发展的也比较早。在人工智能届有一种说法:认为机器学习是人工智能领域中最能够体现智能的一个分支。从历史上看,机器学习似乎也是人工智能中发展最快的分支之一。机器学习发展早期,限于计算机计算能力、样本量等因素,很多算法无法实现。而近些年来,计算机的计算能力和存储能力都有了很大的提高,数据发掘引领了大数据时代的到来,使得原来复杂度很高的算法能够实现,得到的结果也更为精细。理论上,只要计算机计算能力足够强、样本数据量足够大,就可以不断增加神经网络的层数以及改变神经网络的结构,这就是“深度学习”,在理论和技术上,并没有太多的创新。只是深度学习代表了机器学习的新方向,同时也推动了机器学习的发展。

深度学习是机器学习的方向和领域之一,机器学习又是人工智能的方向和领域之一。
具体他们分别研究哪些问题一篇文章很难讲清楚哩。不过大多数人都推荐图灵的那篇论文作为研究起点。

如何区分人工智能,机器学习和深度学习

一、人工智能

人工智能是计算机科学的一个分支,这是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能有三个层次,分别是:

(1)计算智能:高效快速地求解出结果,包括遗传算法、群体智能(蚁群、粒子群)、模拟退火等;

(2)感知智能:让计算机看得见,听得到,包括图像识别、语音识别等;

(3)认知智能:最高一个层次的人工智能,包括自然语言处理和机器人等。

二、机器学习是实现人工智能的一种重要方法。

1、机器学习按照方法来分,可以分成四类,分别是:监督学习、无监督学习、半监督学习和强化学习。

2、监督学习针对有标签数据集,它通过学习出一个模型(其实就是一个函数)来拟合数据,按照模型(函数)的输出结果是否离散又可以分为两类,分别是:(1)输出结果为离散值,则为分类问题(常见的分类算法:KNN、贝叶斯分类器、决策树、SVM、神经网络、GBDT、随机森林等);(2)输出结果为连续值,则为回归问题(有线性回归和逻辑回归两种)。

3、无监督学习针对没有标签的数据集,它将样本按照距离划分成类簇,使得类内相似性最大,类间相似性最小。通过观察聚类结果,我们可以得到数据集的分布情况,为进一步分析提供支撑。常见的聚类算法有K-means、高斯混合模型和LDA。

三、深度学习是机器学习的一个分支,说白了就是深层神经网络(DNN),计算机视觉中常用的深度学习模型是卷积神经网络(CNN),自然语言处理中常用的神经网络是RNN和LSTM。

一篇文章搞懂人工智能,机器学习和深度学习之间的区别

人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。
人工智能
人工智能先驱们在达特茅斯开会时,心中的梦想是希望通过当时新兴的计算机,打造拥有相当于人类智能的复杂机器。这就是我们所说的“通用人工智能”(General AI)概念,拥有人类五感(甚至更多)、推理能力以及人类思维方式的神奇机器。在电影中我们已经看过无数这样的机器人,对人类友好的 C-3PO,以及人类的敌人终结者。通用人工智能机器至今只存在 于电影和科幻小说里,理由很简单:我们还实现不了,至少目前为止。
我们力所能及的,算是“弱人工智能”(Narrow AI):执行特定任务的水平与人类相当,甚至超越人类的技术。现实中有很多弱人工智能的例子。这些技术有人类智能的一面。但是它们是如何做到的?智能来自哪里?这就涉及到下一个同心圆:机器学习。
机器学习
机器学习是实现人工智能的一种方法。机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。与传统的使用特定指令集手写软件不同,我们使用大量数据和算法来“训练”机器,由此带来机器学习如何完成任务。
许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。
但是由于计算机视觉和图像检测技术的滞后,经常容易出错。
深度学习
深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。
举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。
每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probability vector),这其实是基于权重做出的猜测结果。在本文的示例中,系统可能会有 86% 的把握认定图像是一个停止标志,7% 的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。
不过,问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。不过,以多伦多大学 Geoffrey Hinton 教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案。不过值得庆幸的是Facebook 利用神经网络记住了你母亲的面孔;吴恩达 2012 年在谷歌实现了可以识别猫的神经网络。
如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的 AlphaGo 学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。

  
永远跟党走
  • 如果你觉得本站很棒,可以通过扫码支付打赏哦!

    • 微信收款码
    • 支付宝收款码