已知抛物线y=ax2+bx+c 已知(x^2+y^2)(x^2+y^2+1)=6,求:x^2+y^2的值
已知(x^2+y^2)(x^2+y^2+1)=6,求:x^2+y^2的值
已知(x^2+y^2)(x^2+y^2+1)=6,求:x^2+y^2的值
设x^2+y^2=a(a大于或等于0)
则a(a+1)=6
a^2+a-6=0
(a+3)(a-2)=0
a=-3(舍)或a=2
所以a=2
即x^2+y^2=2
解方程:2y(y+1)-y(3y-2)+2y^2=y^2-2
2y(y+1)-y(3y-2)+2y^2=y^2-2
2y^2+2y-3y^2+2y+2y^2-y^2+2=0
4y+2=0
y=-0.5
(1+sinα+cosα)*[sin(α/2)-cos(α/2)]/√(2+2cosα)化简 (3/2*π<α<2π)
分子(1+sinα+cosα)(sinα/2-cosα/2)
=[2(cosα/2)^2+2sinα/2*cosα/2](sinα/2-cosα/2)
=2cosα/2(sinα/2+cosα/2)(sinα/2-cosα/2)
=2cosα/2[(sinα/2)^2-(cosα/2)^2]
=2cosα/2*(-cosα)
分母√2+2cosα
=√2+2[ 2(cosα/2)^2-1]
=√4(cosα/2)^2
=2cosα/2
所以原式=-cosα
已知tan(π+a)=-1/3求[sin(π-2a)+cos^2a]/[2cos2a+sin2a+2]
tan(π+a)=-1/3
tana=-1/3
[sin(π-2a)+cos^2a]/[2cos2a+sin2a+2]
=[sin(2a)+cos^2a]/[2cos2a+sin2a+2]
=[2sinacosa+cos^2a]/[4cos^2a+2sinacosa]
=[2sina+cosa]/[4cosa+2sina]
=[2tana+1]/[4+2tana]
=(2*(-1/3)+1)/(4+2*(-1/3))
=1/10
化简:(1)2a-(-3a+1);(2)10a2-2b-4(2a2-3b)
(1)解:2a-(-3a+1)
=2a+3a-1
=5a-1;
(2)解:10a2-2b-4(2a2-3b)
=10a2-2b-8a2+12b
=2a2+10b.
-4≤(3-2x)/2≤-2与(2x-3)/4≤2≤(1/2)x+1
1.-4≤(3-2x)/2≤-2
-8≤3-2x≤-4
-8≤3-2x,2x≤11,x≤11/2
3-2x≤-4,2x≥7,x≥7/2
解集{x|7/2≤x≤11/2}
2.(2x-3)/4≤2≤(1/2)x+1
(2x-3)/4≤2,2x-3≤8,2x≤11,x≤11/2
2≤(1/2)x+1,(1/2)x≥1,x≥2
解集{x|2≤x≤11/2}
设cos(α-β/2)=-1/9 sin(α/2-β)=2/3 α∈(π/2,π)β∈(0,π/2)求cosα+β/2
已知
cos(α-β/2)=-1/9 (π/2<α-β/2<π) 则sin(α-β/2)=2√5/9
sin(α/2-β)=2/3 (-π/4<α-β/2<π/4) 则cos(α/2-β)=√5/3
cos[(α+β)/2]
=cos[(α-β/2)-(α/2-β)]
=cos(α-β/2)cos(α/2-β)+sin(α-β/2)sin(α/2-β)
=(√5/3)(-1/9)+(2√5/9)(2/3)
=-√5/27+4√5/27
=3√5/27
=√5/9
计算i(1-i) 2 等于( ) A.2-2i B.2+2i C.-2 D.
i(1-i) 2 =i(1-1-2i)=i(-2i)=-2i 2 =2故选D.
1-2/3-2/9-2/27-2/81-2/243-2/729=
1-2/3-2/9-2/27-2/81-2/243-2/729
=1-2/3-2/9-2/27-2/81-2/243-2/729-1/729+1/729
=1-2/3-2/9-2/27-2/81-2/243-3/729+1/729
=1-2/3-2/9-2/27-2/81-2/243-1/243+1/729
=1-2/3-2/9-2/27-2/81-1/81+1/729
=1-2/3-2/9-2/27-1/27+1/729
=1-2/3-2/9-1/9+1/729
=1-2/3-1/3+1/729
=1-1+1/729
=1/729
计算:3*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
3*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^2-1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^4-1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^8-1)*(2^8+1)*(2^16+1)*(2^32+1)+1
=(2^16-1)*(2^16+1)*(2^32+1)+1
=(2^32-1)*(2^32+1)+1
=2^64-1+1
=2^64.
