您现在的位置是:首页 > 十万个为什么

为什么国王无法把棋盘里的米赏给术士

火烧 2016-12-06 15:25:15 十万个为什么 1074
古印度有个国王,非常爱玩,有一次下令在全国张贴招贤榜:如果谁能替国王找到奇妙的游戏,将给予重赏。 一个术士揭了招贤榜。他发明了一种棋,使国王玩得舍不得放手。国王高兴地问术士道:“你对本王的赏赐要求些什么呢?”术士赶忙拜倒:“大王陛下在上,小小术士没有特殊的


古印度有个国王,非常爱玩,有一次下令在全国张贴招贤榜:如果谁能替国王找到奇妙的游戏,将给予重赏。

一个术士揭了招贤榜。他发明了一种棋,使国王玩得舍不得放手。国王高兴地问术士道:“你对本王的赏赐要求些什么呢?”术士赶忙拜倒:“大王陛下在上,小小术士没有特殊的要求,只请大王在那棋盘的第一个格子里放下一粒米,在第二个格子里放下两粒米,在第三个格子里放下4粒米,然后在以后的每一个格子里都放进比前一个格子多一倍的米,64个格子放满了,也就是我要求的奖赏了。”国王一听,这点米算什么,就一口答应了。可是,当找来算师一五一十地算了以后,使国王大吃一惊,原来这些米可以覆盖全地球,全世界要几百年才能生产出来,根本无法赏给这位术士。

为什么这个棋盘里的米会有这么多呢?


让我们算一算看:

第一个格子里是1粒,第二个格子里是2粒,一共有3粒,或者,等于:

2×2-1=3。

加上第三个格子的4粒,一共是7粒,即

2×2×2-1=7。

再加上第四个格子的8粒,共有15粒,即

2×2×2×2-1=15。

也等于:

24-1=15。

所以,从第一格到第四格的米粒数就等于2的4次乘方减去1。那么,从第1格到第64格的米粒数,将等于2的64次乘方减去1,即:


=18446744073709551615。

为什么这个数字会这么惊人呢?原来这个术士聪明地运用了数学上的几何级数,那是把2作为基本倍数,棋盘上的格数作为这个基本倍数的乘方,即2的n次方。棋盘上一共有64格,n就等于64,但是要减去第一格上那一粒米的数值,即264-1;然后再除以基本倍数减去第一格上数值的差,即2-1。这样,

看来,一粒米、两粒米这个数目很小,算不得什么,可是,用几何级数一算,却成为一个不可想象的巨大数字。愚蠢的国王怎能理会几何级数的奥妙呢。

永远跟党走
  • 如果你觉得本站很棒,可以通过扫码支付打赏哦!

    • 微信收款码
    • 支付宝收款码